Job-shop scheduling problem (JSP) is a typical NP-hard combinatorial optimization problem and has a broad background for engineering application. Nowadays, the effective approach for JSP is a hot topic in related re...Job-shop scheduling problem (JSP) is a typical NP-hard combinatorial optimization problem and has a broad background for engineering application. Nowadays, the effective approach for JSP is a hot topic in related research area of manufacturing system. However, some JSPs, even for moderate size instances, are very difficult to find an optimal solution within a reasonable time because of the process constraints and the complex large solution space. In this paper, an adaptive multi-population genetic algorithm (AMGA) has been proposed to solve this prob- lem. Firstly, using multi-populations and adaptive cross- over probability can enlarge search scope and improve search performance. Secondly, using adaptive mutation probability and elite replacing mechanism can accelerate convergence speed. The approach is tested for some clas- sical benchmark JSPs taken from the literature and com- pared with some other approaches. The computational results show that the proposed AMGA can produce optimal or near-optimal values on almost all tested benchmark instances. Therefore, we can believe that AMGA can be considered as an effective method for solving JSP.展开更多
文摘Job-shop scheduling problem (JSP) is a typical NP-hard combinatorial optimization problem and has a broad background for engineering application. Nowadays, the effective approach for JSP is a hot topic in related research area of manufacturing system. However, some JSPs, even for moderate size instances, are very difficult to find an optimal solution within a reasonable time because of the process constraints and the complex large solution space. In this paper, an adaptive multi-population genetic algorithm (AMGA) has been proposed to solve this prob- lem. Firstly, using multi-populations and adaptive cross- over probability can enlarge search scope and improve search performance. Secondly, using adaptive mutation probability and elite replacing mechanism can accelerate convergence speed. The approach is tested for some clas- sical benchmark JSPs taken from the literature and com- pared with some other approaches. The computational results show that the proposed AMGA can produce optimal or near-optimal values on almost all tested benchmark instances. Therefore, we can believe that AMGA can be considered as an effective method for solving JSP.