Transonic shocks play a pivotal role in designation of supersonic inlets and ramjets.For the three-dimensional steady non-isentropic compressible Euler system with frictions,we constructe a family of transonic shock s...Transonic shocks play a pivotal role in designation of supersonic inlets and ramjets.For the three-dimensional steady non-isentropic compressible Euler system with frictions,we constructe a family of transonic shock solutions in rectilinear ducts with square cross-sections.In this article,we are devoted to proving rigorously that a large class of these transonic shock solutions are stable,under multidimensional small perturbations of the upcoming supersonic flows and back pressures at the exits of ducts in suitable function spaces.This manifests that frictions have a stabilization effect on transonic shocks in ducts,in consideration of previous works which shown that transonic shocks in purely steady Euler flows are not stable in such ducts.Except its implications to applications,because frictions lead to a stronger coupling between the elliptic and hyperbolic parts of the three-dimensional steady subsonic Euler system,we develop the framework established in previous works to study more complex and interesting Venttsel problems of nonlocal elliptic equations.展开更多
We are concerned with global solutions of multidimensional(M-D)Riemann problems for nonlinear hyperbolic systems of conservation laws,focusing on their global configurations and structures.We present some recent devel...We are concerned with global solutions of multidimensional(M-D)Riemann problems for nonlinear hyperbolic systems of conservation laws,focusing on their global configurations and structures.We present some recent developments in the rigorous analysis of two-dimensional(2-D)Riemann problems involving transonic shock waves through several prototypes of hyperbolic systems of conservation laws and discuss some further M-D Riemann problems and related problems for nonlinear partial differential equations.In particular,we present four different 2-D Riemann problems through these prototypes of hyperbolic systems and show how these Riemann problems can be reformulated/solved as free boundary problems with transonic shock waves as free boundaries for the corresponding nonlinear conservation laws of mixed elliptic-hyperbolic type and related nonlinear partial differential equations.展开更多
In the present paper an existence and uniqueness of solution of the nonlo- cal boundary value problem for the third order loaded elliptic-hyperbolic type equa- tion in double-connected domain have been investigated. A...In the present paper an existence and uniqueness of solution of the nonlo- cal boundary value problem for the third order loaded elliptic-hyperbolic type equa- tion in double-connected domain have been investigated. At the proof of unequivocal solvability of the investigated problem, the extremum principle for the mixed type equations and method of integral equations have been used.展开更多
In this work an existence and uniqueness of solution of the non-local boundary value problem for the loaded elliptic-hyperbolic type equation with integral-differential operations in double-connected domain have been ...In this work an existence and uniqueness of solution of the non-local boundary value problem for the loaded elliptic-hyperbolic type equation with integral-differential operations in double-connected domain have been investigated. The uniqueness of solution is proved by the method of integral energy using an extremum principle for the mixed type equations, and the existence is proved by the method of integral equations.展开更多
基金This work was supported in part by National Nature Science Foundation of China(11371141 and 11871218)by Science and Technology Commission of Shanghai Municipality(18dz2271000).
文摘Transonic shocks play a pivotal role in designation of supersonic inlets and ramjets.For the three-dimensional steady non-isentropic compressible Euler system with frictions,we constructe a family of transonic shock solutions in rectilinear ducts with square cross-sections.In this article,we are devoted to proving rigorously that a large class of these transonic shock solutions are stable,under multidimensional small perturbations of the upcoming supersonic flows and back pressures at the exits of ducts in suitable function spaces.This manifests that frictions have a stabilization effect on transonic shocks in ducts,in consideration of previous works which shown that transonic shocks in purely steady Euler flows are not stable in such ducts.Except its implications to applications,because frictions lead to a stronger coupling between the elliptic and hyperbolic parts of the three-dimensional steady subsonic Euler system,we develop the framework established in previous works to study more complex and interesting Venttsel problems of nonlocal elliptic equations.
基金The research of Gui-Qiang G.Chen was supported in part by the UK Engineering and Physical Sciences Research Council Awards EP/L015811/1,EP/V008854/1,EP/V051121/1the Royal Society-Wolfson Research Merit Award WM090014.
文摘We are concerned with global solutions of multidimensional(M-D)Riemann problems for nonlinear hyperbolic systems of conservation laws,focusing on their global configurations and structures.We present some recent developments in the rigorous analysis of two-dimensional(2-D)Riemann problems involving transonic shock waves through several prototypes of hyperbolic systems of conservation laws and discuss some further M-D Riemann problems and related problems for nonlinear partial differential equations.In particular,we present four different 2-D Riemann problems through these prototypes of hyperbolic systems and show how these Riemann problems can be reformulated/solved as free boundary problems with transonic shock waves as free boundaries for the corresponding nonlinear conservation laws of mixed elliptic-hyperbolic type and related nonlinear partial differential equations.
文摘In the present paper an existence and uniqueness of solution of the nonlo- cal boundary value problem for the third order loaded elliptic-hyperbolic type equa- tion in double-connected domain have been investigated. At the proof of unequivocal solvability of the investigated problem, the extremum principle for the mixed type equations and method of integral equations have been used.
文摘In this work an existence and uniqueness of solution of the non-local boundary value problem for the loaded elliptic-hyperbolic type equation with integral-differential operations in double-connected domain have been investigated. The uniqueness of solution is proved by the method of integral energy using an extremum principle for the mixed type equations, and the existence is proved by the method of integral equations.