The ideal motion characteristics for the vibrating screen was presented according to the principle of screening process with constant bed thickness.A new vibrating screen with variable elliptical trace was proposed.An...The ideal motion characteristics for the vibrating screen was presented according to the principle of screening process with constant bed thickness.A new vibrating screen with variable elliptical trace was proposed.An accurate mechanical model was constructed according to the required structural motion features.Applying multi-degree-of-freedom vibration theory,characteristics of the vibrating screen was analyzed.Kinematics parameters of the vibrating screen which motion traces were linear,circular or elliptical were obtained.The stable solutions of the dynamic equations gave the motions of the vibrating screen by means of computer simulations.Technological parameters,including amplitude,movement velocity and throwing index,of five specific points along the screen surface were gained by theoretical calculation.The results show that the traces of the new designed vibrating screen follow the ideal screening motion.The screening efficiency and processing capacity may thus be effectively improved.展开更多
Traditional vibrating screen usually adopts the linear centralized excitation mode,which causes the difficulty in particles loosening and low screening efficiency.The variable elliptical vibrating screen(VEVS)trajecto...Traditional vibrating screen usually adopts the linear centralized excitation mode,which causes the difficulty in particles loosening and low screening efficiency.The variable elliptical vibrating screen(VEVS)trajectory is regulated to adapt the material mass along the direction of the screen length,improving the particles distribution as well as the screening efficiency.In this work,a theoretical model was developed for analyzing the screen surface motion law during VEVS-based screening process.An equation was obtained to show the relationship between the horizontal amplitude and the vertical amplitude.The materials kinetic characteristics were studied by using high-speed camera during screening process.Compared with equal-amplitude screen(EAS),the material moving velocity was increased by 13.03%on the first half but decreased by 3.52% on the second half,and the total screening time was reduced by 9.42% by using VEVS.In addition,-6 mm screening test was carried out.At the length of VEVS equaled to 1.2 m,the screening efficiency and the total misplaced material content were 92.50% and 2.90%,respectively.However,the screening efficiency was 89.91% and the total misplaced material content was 3.76% during EAS-based screening process.Furthermore,when external moisture is 5.96%,the screening efficiency of VEVS could reach 86.95%.The 2 TKB50113 type VEVS with double-layered screen surface used in Huoshizui Coal Mine was 5.0 m in width and 11.3 m in length.The areas of single layer and double layer were 56.5 and 113 m~2,respectively.In industrial production,the processing capacity was 2500-3000 t/h and the screening efficiency was larger than 90%.展开更多
As a typical screening apparatus,the elliptically vibrating screen was extensively employed for the size classification of granular materials.Unremitting efforts have been paid on the improvement of sieving performanc...As a typical screening apparatus,the elliptically vibrating screen was extensively employed for the size classification of granular materials.Unremitting efforts have been paid on the improvement of sieving performance,but the optimization problem was still perplexing the researchers due to the complexity of sieving process.In the present paper,the sieving process of elliptically vibrating screen was numerically simulated based on the Discrete Element Method(DEM).The production quality and the processing capacity of vibrating screen were measured by the screening efficiency and the screening time,respectively.The sieving parameters including the length of semi-major axis,the length ratio of two semi-axes,the vibration frequency,the inclination angle,the vibration direction angle and the motion direction of screen deck were investigated.Firstly,the Gradient Boosting Decision Trees(GBDT)algorithm was adopted in the modelling task of screening data.The trained prediction models with sufficient generalization performance were obtained,and the relative importance of six parameters for both the screening indexes was revealed.After that,a hybrid MACO-GBDT algorithm based on the Ant Colony Optimization(ACO)was proposed for optimizing the sieving performance of vibrating screen.Both the single objective optimization of screening efficiency and the stepwise optimization of screening results were conducted.Ultimately,the reliability of the MACO-GBDT algorithm were examined by the numerical experiments.The optimization strategy provided in this work would be helpful for the parameter design and the performance improvement of vibrating screens.展开更多
基金Projects 50574091 and 50774084 supported by the National Natural Science Foundation of China
文摘The ideal motion characteristics for the vibrating screen was presented according to the principle of screening process with constant bed thickness.A new vibrating screen with variable elliptical trace was proposed.An accurate mechanical model was constructed according to the required structural motion features.Applying multi-degree-of-freedom vibration theory,characteristics of the vibrating screen was analyzed.Kinematics parameters of the vibrating screen which motion traces were linear,circular or elliptical were obtained.The stable solutions of the dynamic equations gave the motions of the vibrating screen by means of computer simulations.Technological parameters,including amplitude,movement velocity and throwing index,of five specific points along the screen surface were gained by theoretical calculation.The results show that the traces of the new designed vibrating screen follow the ideal screening motion.The screening efficiency and processing capacity may thus be effectively improved.
基金financially supported by the National Natural Science Foundation of China (Nos. U1903132 and 51904301)the Natural Science Foundation of Jiangsu Province (No. BK20180650)。
文摘Traditional vibrating screen usually adopts the linear centralized excitation mode,which causes the difficulty in particles loosening and low screening efficiency.The variable elliptical vibrating screen(VEVS)trajectory is regulated to adapt the material mass along the direction of the screen length,improving the particles distribution as well as the screening efficiency.In this work,a theoretical model was developed for analyzing the screen surface motion law during VEVS-based screening process.An equation was obtained to show the relationship between the horizontal amplitude and the vertical amplitude.The materials kinetic characteristics were studied by using high-speed camera during screening process.Compared with equal-amplitude screen(EAS),the material moving velocity was increased by 13.03%on the first half but decreased by 3.52% on the second half,and the total screening time was reduced by 9.42% by using VEVS.In addition,-6 mm screening test was carried out.At the length of VEVS equaled to 1.2 m,the screening efficiency and the total misplaced material content were 92.50% and 2.90%,respectively.However,the screening efficiency was 89.91% and the total misplaced material content was 3.76% during EAS-based screening process.Furthermore,when external moisture is 5.96%,the screening efficiency of VEVS could reach 86.95%.The 2 TKB50113 type VEVS with double-layered screen surface used in Huoshizui Coal Mine was 5.0 m in width and 11.3 m in length.The areas of single layer and double layer were 56.5 and 113 m~2,respectively.In industrial production,the processing capacity was 2500-3000 t/h and the screening efficiency was larger than 90%.
基金The research work is financially supported by National Natural Science Foundation of China(No.51775113)Natural Science Foundation of Fujian Province(No.2017J01675)+2 种基金51st Scientific Research Fund Program of Fujian University of Technology(No.GY-Z160139)Key Research Platform of NC Equipment and Technology in Fujian Province(No.2014H2002)Subsidized Project for Postgraduates’Innovative Fund in Scientific Research of Huaqiao University(No.17013080007).
文摘As a typical screening apparatus,the elliptically vibrating screen was extensively employed for the size classification of granular materials.Unremitting efforts have been paid on the improvement of sieving performance,but the optimization problem was still perplexing the researchers due to the complexity of sieving process.In the present paper,the sieving process of elliptically vibrating screen was numerically simulated based on the Discrete Element Method(DEM).The production quality and the processing capacity of vibrating screen were measured by the screening efficiency and the screening time,respectively.The sieving parameters including the length of semi-major axis,the length ratio of two semi-axes,the vibration frequency,the inclination angle,the vibration direction angle and the motion direction of screen deck were investigated.Firstly,the Gradient Boosting Decision Trees(GBDT)algorithm was adopted in the modelling task of screening data.The trained prediction models with sufficient generalization performance were obtained,and the relative importance of six parameters for both the screening indexes was revealed.After that,a hybrid MACO-GBDT algorithm based on the Ant Colony Optimization(ACO)was proposed for optimizing the sieving performance of vibrating screen.Both the single objective optimization of screening efficiency and the stepwise optimization of screening results were conducted.Ultimately,the reliability of the MACO-GBDT algorithm were examined by the numerical experiments.The optimization strategy provided in this work would be helpful for the parameter design and the performance improvement of vibrating screens.