期刊文献+
共找到1,148篇文章
< 1 2 58 >
每页显示 20 50 100
Approximation Property of the Modified Elman Network 被引量:5
1
作者 任雪梅 陈杰 +1 位作者 龚至豪 窦丽华 《Journal of Beijing Institute of Technology》 EI CAS 2002年第1期19-23,共5页
A new type of recurrent neural network is discussed, which provides the potential for modelling unknown nonlinear systems. The proposed network is a generalization of the network described by Elman, which has three la... A new type of recurrent neural network is discussed, which provides the potential for modelling unknown nonlinear systems. The proposed network is a generalization of the network described by Elman, which has three layers including the input layer, the hidden layer and the output layer. The input layer is composed of two different groups of neurons, the group of external input neurons and the group of the internal context neurons. Since arbitrary connections can be allowed from the hidden layer to the context layer, the modified Elman network has more memory space to represent dynamic systems than the Elman network. In addition, it is proved that the proposed network with appropriate neurons in the context layer can approximate the trajectory of a given dynamical system for any fixed finite length of time. The dynamic backpropagation algorithm is used to estimate the weights of both the feedforward and feedback connections. The methods have been successfully applied to the modelling of nonlinear plants. 展开更多
关键词 nonlinear systems elman network dynamic backpropagation algorithm MODELLING
下载PDF
Convergence of gradient method for Elman networks
2
作者 吴微 徐东坡 李正学 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第9期1231-1238,共8页
The gradient method for training Elman networks with a finite training sample set is considered. Monotonicity of the error function in the iteration is shown. Weak and strong convergence results are proved, indicating... The gradient method for training Elman networks with a finite training sample set is considered. Monotonicity of the error function in the iteration is shown. Weak and strong convergence results are proved, indicating that the gradient of the error function goes to zero and the weight sequence goes to a fixed point, respectively. A numerical example is given to support the theoretical findings. 展开更多
关键词 elman network gradient learning algorithm CONVERGENCE MONOTONICITY
下载PDF
NONLINEAR STABLE ADAPTIVE CONTROL BASED UPON ELMAN NETWORKS 被引量:3
3
作者 Li Xiang Chen Zengqiang Yuan ZhuzhiDept.of Computer and System Science,Nankai University,Tianjin30 0 0 71 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2000年第3期332-340,共9页
Elman networks' dynamical modeling capability is discussed in this paper firstly.According to Elman networks' unique structure,a weight training algorithm is designed and a nonlinear adaptive controller is con... Elman networks' dynamical modeling capability is discussed in this paper firstly.According to Elman networks' unique structure,a weight training algorithm is designed and a nonlinear adaptive controller is constructed.Without the PE presumption,neural networks controller's closed loop properties are studied and the whole Elman networks' passivity is demonstrated. 展开更多
关键词 elman networks simple recurrent neural networks nonlinear control adaptive control PASSIVITY CLOSED loop property.
全文增补中
Parallel and optimized genetic Elman network for ^(252)Cf source-driven verification system
4
作者 冯鹏 魏彪 金晶 《Nuclear Science and Techniques》 SCIE CAS CSCD 2015年第4期65-71,共7页
The 252Cf source-driven verification system(SDVS)can recognize the enrichment of fissile material with the enrichment-sensitive autocorrelation functions of a detector signal in252Cf source-driven noise-analysis(SDNA)... The 252Cf source-driven verification system(SDVS)can recognize the enrichment of fissile material with the enrichment-sensitive autocorrelation functions of a detector signal in252Cf source-driven noise-analysis(SDNA)measurements.We propose a parallel and optimized genetic Elman network(POGEN)to identify the enrichment of235U based on the physical properties of the measured autocorrelation functions.Theoretical analysis and experimental results indicate that,for 4 different enrichment fissile materials,due to higher information utilization,more efficient network architecture,and optimized parameters,the POGEN-based algorithm can obtain identification results with higher recognition accuracy,compared to the integrated autocorrelation function(IAF)method. 展开更多
关键词 elman网络 并行优化 验证系统 源驱动 遗传 自相关函数 函数识别 信息利用率
下载PDF
Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm
5
作者 Zhuo Chen Ningning Wang +1 位作者 Wenbo Jin Dui Li 《Energy Engineering》 EI 2024年第4期1007-1026,共20页
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi... A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy. 展开更多
关键词 Waxy crude oil wax deposition rate chaotic map improved reptile search algorithm elman neural network prediction accuracy
下载PDF
Study on Ecological Change Remote Sensing Monitoring Method Based on Elman Dynamic Recurrent Neural Network
6
作者 Zhen Chen Yiyang Zheng 《Journal of Geoscience and Environment Protection》 2024年第4期31-44,共14页
In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to t... In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area. 展开更多
关键词 Remote Sensing Ecological Index Long Time Series Space-Time Change elman Dynamic Recurrent Neural network
下载PDF
A mixture of HMM,GA,and Elman network for load prediction in cloud-oriented data centers 被引量:7
7
作者 Da-yu XU Shan-lin YANG Ren-ping LIU 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2013年第11期845-858,共14页
The rapid growth of computational power demand from scientific,business,and Web applications has led to the emergence of cloud-oriented data centers.These centers use pay-as-you-go execution environments that scale tr... The rapid growth of computational power demand from scientific,business,and Web applications has led to the emergence of cloud-oriented data centers.These centers use pay-as-you-go execution environments that scale transparently to the user.Load prediction is a significant cost-optimal resource allocation and energy saving approach for a cloud computing environment.Traditional linear or nonlinear prediction models that forecast future load directly from historical information appear less effective.Load classification before prediction is necessary to improve prediction accuracy.In this paper,a novel approach is proposed to forecast the future load for cloud-oriented data centers.First,a hidden Markov model(HMM) based data clustering method is adopted to classify the cloud load.The Bayesian information criterion and Akaike information criterion are employed to automatically determine the optimal HMM model size and cluster numbers.Trained HMMs are then used to identify the most appropriate cluster that possesses the maximum likelihood for current load.With the data from this cluster,a genetic algorithm optimized Elman network is used to forecast future load.Experimental results show that our algorithm outperforms other approaches reported in previous works. 展开更多
关键词 Cloud computing Load prediction Hidden Markov model Genetic algorithm elman network
原文传递
基于IWOA-SA-Elman神经网络的短期风电功率预测 被引量:3
8
作者 刘吉成 朱玺瑞 于晶 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期143-150,共8页
由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算... 由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算法和模拟退火组合优化的Elman神经网络短期风电功率预测模型,模型首先利用改进鲸鱼算法结合模拟退火策略获得高质量神经网络初始权值,接着引入正则化损失函数防止其过拟合,最后以西班牙瓦伦西亚某风电场陆上短期风电功率为研究对象,将该算法与BP、LSTM、Elman、WOA-Elman、IWOA-Elman 5种神经网络算法进行算法性能测试对比,结果表明IWOA-SA-Elman神经网络模型预测误差最小,验证了该算法的合理性和有效性。 展开更多
关键词 风电 elman神经网络 预测 模拟退火 鲸鱼优化算法
下载PDF
Application Research of Temperature Forecasts on Elman Neural Network
9
作者 王芳 涂春丽 勾永尧 《Agricultural Science & Technology》 CAS 2011年第11期1680-1681,1686,共3页
[Objective] The aim was to establish Elman neural network model to predict the dynamic changes of temperature. [Method] Considering the inherent nature of temperature, and dy dint of the temperature in Chongqing durin... [Objective] The aim was to establish Elman neural network model to predict the dynamic changes of temperature. [Method] Considering the inherent nature of temperature, and dy dint of the temperature in Chongqing during 1951-2010, the Elman artificial neural network model was applied to predict the temperature. [Result] This simulation result suggested that the relative error was small and can have a good simulation to the future temperature changes. [Conclusion] The prediction result can guide agricultural production and further apply to the field of pricing the weather derivative products. 展开更多
关键词 Temperature forecasts elman neural network Agricultural production
下载PDF
基于改进SFLA-Elman神经网络的电离层杂波抑制方法
10
作者 刘强 尚尚 +2 位作者 乔铁柱 祝健 石依山 《电讯技术》 北大核心 2024年第6期848-856,共9页
针对高频地波雷达目标检测中电离层杂波的干扰问题,提出了一种基于改进混合蛙跳算法优化Elman神经网络预测抑制电离层杂波的策略。为解决混合蛙跳算法初始种群分布不均匀、收敛精度低、易陷于局部极值等问题,引入Cubic混沌映射、莱维飞... 针对高频地波雷达目标检测中电离层杂波的干扰问题,提出了一种基于改进混合蛙跳算法优化Elman神经网络预测抑制电离层杂波的策略。为解决混合蛙跳算法初始种群分布不均匀、收敛精度低、易陷于局部极值等问题,引入Cubic混沌映射、莱维飞行策略、非线性平衡因子和复制操作,增强种群多样性,提高算法搜索能力。利用改进后的算法和其他算法分别优化Elman神经网络预测抑制模型,结果表明,改进后的算法无论是在收敛精度和稳定性上,还是在临近距离单元电离层杂波的预测抑制上,都取得了显著的提升。在基本保留目标信号的基础上,平均信杂比较原始回波提升18.52 dB,较原始混合蛙跳算法提升1.08 dB,对于电离层杂波的抑制具有较高应用价值。 展开更多
关键词 高频地波雷达 电离层杂波抑制 混合蛙跳算法 elman神经网络 莱维飞行
下载PDF
基于PSO-Elman神经网络的井底风温预测模型
11
作者 程磊 李正健 +1 位作者 史浩镕 王鑫 《工矿自动化》 CSCD 北大核心 2024年第1期131-137,共7页
目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒... 目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒子群优化(PSO)算法对Elman神经网络的权值和阈值进行优化,建立了基于PSO-Elman神经网络的井底风温预测模型。分析得出入风相对湿度、入风温度、地面大气压力和井筒深度是井底风温的主要影响因素,因此将其作为模型的输入数据,模型的输出数据为井底风温。在相同样本数据集下的实验结果表明:Elman模型迭代90次后收敛,PSO-Elman模型迭代41次后收敛,说明PSO-Elman模型收敛速度更快;与BP神经网络模型、支持向量回归模型和Elman模型相比,PSO-Elman模型的预测误差较低,平均绝对误差、均方误差(MSE)、平均绝对百分比误差分别为0.376 0℃,0.278 3,1.95%,决定系数R^(2)为0.992 4,非常接近1,表明预测模型具有良好的预测效果。实例验证结果表明,PSO-Elman模型的相对误差范围为-4.69%~1.27%,绝对误差范围为-1.06~0.29℃,MSE为0.26,整体预测精度可满足井下实际需要。 展开更多
关键词 井下热害防治 井底风温预测 粒子群优化算法 elman神经网络 PSO-elman
下载PDF
基于RSSR融合RNGO-Elman神经网络的室内可见光定位
12
作者 张慧颖 盛美春 +2 位作者 梁士达 马成宇 李月月 《半导体光电》 CAS 北大核心 2024年第3期449-457,共9页
针对动态环境下基于接收信号强度的传统可见光定位方法定位精度低、稳定性差等问题,提出一种基于接收信号强度比的改进北方苍鹰算法(NGO)优化Elman神经网络(RNGOElman)的室内可见光定位系统。提出选择一个辅助参考点,将待测参考点与辅... 针对动态环境下基于接收信号强度的传统可见光定位方法定位精度低、稳定性差等问题,提出一种基于接收信号强度比的改进北方苍鹰算法(NGO)优化Elman神经网络(RNGOElman)的室内可见光定位系统。提出选择一个辅助参考点,将待测参考点与辅助参考点的接收信号强度比值和接收机的真实位置作为训练集数据,建立不受动态环境影响的指纹数据库。针对NGO算法收敛速度慢、容易陷入局部最优等问题,利用折射反向学习策略初始化种群,增加种群多样性,引入非线性权重因子来加快收敛速度,避免陷入局部最优。使用优化后的NGO算法来优化Elman神经网络的初始权值和阈值,构建RNGO-Elman动态定位预测模型。仿真结果表明,在4m×4m×3m的实验空间下,优化后的RNGO-Elman定位模型平均定位误差为1.34cm,定位精度相较于Elman定位算法、NGO-Elman定位算法分别提高了82%,21%。在LED发射功率波动时,基于RSSR的RNGO-Elman定位误差为1.29cm,1.38cm。所提可见光定位方法具有定位精度高、定位性能稳定等优点。 展开更多
关键词 光通信 北方苍鹰算法 elman神经网络 接收信号强度比 可见光定位
下载PDF
基于IPSO-Elman的气液两相流含气率测量方法
13
作者 仝卫国 李茂冉 +1 位作者 石宗锦 寇德龙 《中国测试》 CAS 北大核心 2024年第7期26-32,62,共8页
为安全且非侵入式地测量气液两相流含气率,提出一种电阻层析成像(ERT)陈列电阻与Elman神经网络相结合的含气率测量方法。首先,为加快模型训练速度并避免数据冗余,使用主成分分析(PCA)算法对120维的阵列电阻特征降维。然后,在粒子群(PSO... 为安全且非侵入式地测量气液两相流含气率,提出一种电阻层析成像(ERT)陈列电阻与Elman神经网络相结合的含气率测量方法。首先,为加快模型训练速度并避免数据冗余,使用主成分分析(PCA)算法对120维的阵列电阻特征降维。然后,在粒子群(PSO)算法中引入自适应惯性权重和非线性学习因子,并加入遗传算法(GA)的交叉和变异行为以加快算法收敛速度。最后,通过改进的粒子群(IPSO)算法优化Elman神经网络初始权值和阈值,并建立含气率测量模型。经对比实验发现,PCA-IPSO-Elman含气率测量模型的平均绝对百分比误差为2.92%,且训练时间较IPSO-Elman模型减少68.8%。说明所提方法可以达到预期的测量效果。 展开更多
关键词 气液两相流 截面含气率 改进粒子群 elman神经网络 阵列电阻值
下载PDF
FOUR-PARAMETER AUTOMATIC TRANSMISSION TECHNOLOGY FOR CONSTRUCTION VEHICLE BASED ON ELMAN RECURSIVE NEURAL NETWORK 被引量:6
14
作者 ZHANG Hongyan ZHAO Dingxuan +1 位作者 TANG Xinxing Ding Chunfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第1期20-24,共5页
From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction veh... From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction vehicle. A new four-parameter shift schedule is presented, which can keep the torque converter working in the high efficiency area. The control algorithm based on the Elman recursive neural network is applied, and four-parameter control system is developed which is based on industrial computer. The system is used to collect data accurately and control 4D180 power-shift gearbox of ZL50E wheel loader shift timely. An experiment is done on automatic transmission test-bed, and the result indicates that the control system could reliably and safely work and improve the efficiency of hydraulic torque converter. Four-parameter shift strategy that takes into account the power consuming of the working pump has important operating significance and reflects the actual working status of construction vehicle. 展开更多
关键词 Construction vehicle Hydraulic transmission and control Automatic transmission elman recursive neural network
下载PDF
Actuator fault diagnosis of autonomous underwater vehicle based on improved Elman neural network 被引量:6
15
作者 孙玉山 李岳明 +2 位作者 张国成 张英浩 吴海波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期808-816,共9页
Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corr... Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective. 展开更多
关键词 autonomous underwater vehicle fault diagnosis THRUSTER improved elman neural network
下载PDF
Predication of plasma concentration of remifentanil based on Elman neural network 被引量:1
16
作者 汤井田 曹扬 +1 位作者 肖嘉莹 郭曲练 《Journal of Central South University》 SCIE EI CAS 2013年第11期3187-3192,共6页
Due to the nature of ultra-short-acting opioid remifentanil of high time-varying,complex compartment model and low-accuracy of plasma concentration prediction,the traditional estimation method of population pharmacoki... Due to the nature of ultra-short-acting opioid remifentanil of high time-varying,complex compartment model and low-accuracy of plasma concentration prediction,the traditional estimation method of population pharmacokinetics parameters,nonlinear mixed effects model(NONMEM),has the abuses of tedious work and plenty of man-made jamming factors.The Elman feedback neural network was built.The relationships between the patients’plasma concentration of remifentanil and time,patient’age,gender,lean body mass,height,body surface area,sampling time,total dose,and injection rate through network training were obtained to predict the plasma concentration of remifentanil,and after that,it was compared with the results of NONMEM algorithm.In conclusion,the average error of Elman network is 6.34%,while that of NONMEM is 18.99%.The absolute average error of Elman network is 27.07%,while that of NONMEM is 38.09%.The experimental results indicate that Elman neural network could predict the plasma concentration of remifentanil rapidly and stably,with high accuracy and low error.For the characteristics of simple principle and fast computing speed,this method is suitable to data analysis of short-acting anesthesia drug population pharmacokinetic and pharmacodynamics. 展开更多
关键词 elman neural network REMIFENTANIL plasma concentration predication model
下载PDF
Multicomponent Kinetic Determination by Wavelet Packet Transform Based Elman Recurrent Neural Network Method 被引量:1
17
作者 RENShou-xin GAOLing 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第6期698-702,共5页
This paper covers a novel method named wavelet packet transform based Elman recurrent neural network(WPTERNN) for the simultaneous kinetic determination of periodate and iodate. The wavelet packet representations of s... This paper covers a novel method named wavelet packet transform based Elman recurrent neural network(WPTERNN) for the simultaneous kinetic determination of periodate and iodate. The wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. The Elman recurrent network was applied to non-linear multivariate calibration. In this case, by means of optimization, the wavelet function, decomposition level and number of hidden nodes for WPTERNN method were selected as D4, 5 and 5 respectively. A program PWPTERNN was designed to perform multicomponent kinetic determination. The relative standard error of prediction(RSEP) for all the components with WPTERNN, Elman RNN and PLS were 3.23%, 11.8% and 10.9% respectively. The experimental results show that the method is better than the others. 展开更多
关键词 Wavelet packet transform elman recurrent neural network Multicomponent kinetic determination
下载PDF
ELMAN Neural Network with Modified Grey Wolf Optimizer for Enhanced Wind Speed Forecasting 被引量:5
18
作者 M. Madhiarasan S. N. Deepa 《Circuits and Systems》 2016年第10期2975-2995,共21页
The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a ... The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s determination and attempts a novel hybrid method in order to achieve enhanced wind speed forecasting. This paper proposes the following two main innovative contributions 1) both either over fitting or under fitting issues are avoided by means of the proposed new criteria based hidden layer neuron unit’s estimation. 2) ELMAN neural network is optimized through Modified Grey Wolf Optimizer (MGWO). The proposed hybrid method (ELMAN-MGWO) performance, effectiveness is confirmed by means of the comparison between Grey Wolf Optimizer (GWO), Adaptive Gbest-guided Gravitational Search Algorithm (GGSA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS), Particle Swarm Optimization (PSO), Evolution Strategy (ES), Genetic Algorithm (GA) algorithms, meanwhile proposed new criteria effectiveness and precise are verified comparison with other existing selection criteria. Three real-time wind data sets are utilized in order to analysis the performance of the proposed approach. Simulation results demonstrate that the proposed hybrid method (ELMAN-MGWO) achieve the mean square error AVG ± STD of 4.1379e-11 ± 1.0567e-15, 6.3073e-11 ± 3.5708e-15 and 7.5840e-11 ± 1.1613e-14 respectively for evaluation on three real-time data sets. Hence, the proposed hybrid method is superior, precise, enhance wind speed forecasting than that of other existing methods and robust. 展开更多
关键词 elman Neural network Modified Grey Wolf Optimizer Hidden Layer Neuron Units Forecasting Wind Speed
下载PDF
基于经验模态分解-灰色关联度分析-蒲公英优化器改进Elman网络的锂离子电池健康状态估计 被引量:1
19
作者 钱玉村 杨博 +2 位作者 郑如意 梁柏骁 吴鹏宇 《电网技术》 EI CSCD 北大核心 2024年第9期3695-3704,I0050,I0051-I0054,共15页
准确、可靠的锂离子电池健康状态(state-of-health,SOH)估计有助于提高电池设备的安全和稳定运行。针对目前SOH无法直接测量、健康特征难以提取和估计方法不足等问题,提出了一种基于经验模态分解-灰色关联度分析-蒲公英优化器(empirical... 准确、可靠的锂离子电池健康状态(state-of-health,SOH)估计有助于提高电池设备的安全和稳定运行。针对目前SOH无法直接测量、健康特征难以提取和估计方法不足等问题,提出了一种基于经验模态分解-灰色关联度分析-蒲公英优化器(empirical mode decomposition-dandelion optimizer,EMDDO)Elman的锂离子电池SOH估计方法。基于NASA Ames研究中心公开的锂离子电池老化测试数据和实际实验测试数据,提出利用经验模态分解(empirical mode decomposition,EMD)对电池老化数据进行信号分解,从而得到反映电池SOH的特征分量,然后利用灰色关联度分析(grey relation analysis,GRA)对特征分量进行相关性分析来选择模型输入。最后,应用蒲公英优化器(dandelion optimizer,DO)对Elman网络的参数进行优化来提高神经网络的估计性能。实验结果表明,该方法能够准确地估计出锂离子电池的SOH,其估计结果的R2始终大于98%,此外,通过对电池数据在不同训练集数量情况下的SOH估计验证,进一步证明了所提出的估计模型有着良好的泛化性和鲁棒性。 展开更多
关键词 锂离子电池 健康状态 经验模态分解 灰色关联度分析 蒲公英优化器 elman网络
下载PDF
基于SSA-Elman的日光温室温湿度预测模型的研究
20
作者 潘纪港 柳平增 +2 位作者 张艳 张铭志 刘传龙 《中国农机化学报》 北大核心 2024年第11期69-76,共8页
有效获取日光温室的温湿度变化趋势对实现温室环境精准调控至关重要。为提高日光温室温度和湿度的预测精度和可靠性,提出一种基于麻雀搜索算法(SSA)优化Elman神经网络的温室温湿度环境预测模型。研究采用斯皮尔曼相关性分析方法筛选出... 有效获取日光温室的温湿度变化趋势对实现温室环境精准调控至关重要。为提高日光温室温度和湿度的预测精度和可靠性,提出一种基于麻雀搜索算法(SSA)优化Elman神经网络的温室温湿度环境预测模型。研究采用斯皮尔曼相关性分析方法筛选出主要的环境影响因子作为输入变量,以日光温室内未来的温度和湿度分别作为输出变量,利用麻雀搜索优化算法对Elman神经网络模型参数分别进行优化调整,完成对日光温室的温湿度变化趋势预测。以山东地区2022年10月1日—2023年1月1日的冬季设施番茄日光温室的监测数据进行试验验证。结果表明,SSA-Elman模型对温度的预测指标均方根误差、平均绝对误差和决定系数分别为0.592、0.320和0.963;对湿度的预测指标均方根误差、平均绝对误差和决定系数分别为0.120、2.530和0.972,说明所提出的模型可有效用于对日光温室温湿度进行精准预测,可为未来温室环境的精准调控提供可靠的数据支撑和决策依据。 展开更多
关键词 elman神经网络 温室温湿度 农业物联网 麻雀搜索算法
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部