In order to improve the interpretation of production log data on gas-water elongated bubble (EB) flow in horizontal wells, a multi-phase flow simulation device was set up to conduct a series of measurement experimen...In order to improve the interpretation of production log data on gas-water elongated bubble (EB) flow in horizontal wells, a multi-phase flow simulation device was set up to conduct a series of measurement experiments using air and tap water as test media, which were measured using a real production logging tool (PLT) string at different deviations and in different mixed flow states. By understanding the characteristics and mechanisms of gas-water EB flow in transparent experimental boreholes during production logging, combined with an analysis of the production log response characteristics and experimental production logging flow pattern maps, a method for flow pattern identification relying on log responses and a drift-flux model were proposed for gas-water EB flow. This model, built upon experimental data of EB flow, reveals physical mechanisms of gas-water EB flow during measurement processing. The coefficients it contains are the specific values under experimental conditions and with the PLT string used in our experiments. These coefficients also reveal the interference with original downhole flow patterns by the PLT string. Due to the representativeness that our simulated flow experiments and PLT string possess, the model coefficients can be applied as empirical values of logging interpretation model parameters directly to real production logging data interpretation, when the measurement circumstances and PLT strings are similar.展开更多
The characteristics of the confined bubble and elongated bubble in subcooled flow boiling in a single horizontal rectangular microchannel with hydraulic diameter Dh=1mm are studied experimentally. The channel with 1 &...The characteristics of the confined bubble and elongated bubble in subcooled flow boiling in a single horizontal rectangular microchannel with hydraulic diameter Dh=1mm are studied experimentally. The channel with 1 ×1mm cross section is fabricated in a thin copper plate whose confinement number is Co=2.8 and the degassed deionized water is used as the working fluid. Visualization on the confined and elongated bubbles inside the microchannel is carded out by employing a high-speed CCD camera with a rnicrolens. The recorded images are carefully analyzed to illustrate the behaviors of the confinement and elongation processes of the bubble. The boiling number is used as an adjustable parameter to regulate the operating conditions which is eventually found to take a vital role in the bubble elongation process. Two formation patterns of the confined and elongated bubble are identified and the interactions between the neighboring confined and elongated bubbles are elucidated.展开更多
The evaporating momentum force and the shear force acting on the meniscus of an evaporating and elongating bubble in flow boiling in microchannel have been investigated theoretically and numerically.The concept of the...The evaporating momentum force and the shear force acting on the meniscus of an evaporating and elongating bubble in flow boiling in microchannel have been investigated theoretically and numerically.The concept of the effective evaporation region and the theory of the liquid layer supplement between elongated bubble and microchannel are proposed,and the analytical expressions of the evaporating momentum force and shear force have been obtained.The relative importance of both forces has been determined by the method of magnitude analysis and numerical simulation.It has been found that the evaporating momentum force can always be neglected in analyzing the bubble elongation process and the motion law of meniscus of elongated bubble in microchannel flow boiling,but whether the shear force should be considered or not is determined by its relative order of magnitude and the particular conditions such as channel dimension and the operating conditions.展开更多
文摘In order to improve the interpretation of production log data on gas-water elongated bubble (EB) flow in horizontal wells, a multi-phase flow simulation device was set up to conduct a series of measurement experiments using air and tap water as test media, which were measured using a real production logging tool (PLT) string at different deviations and in different mixed flow states. By understanding the characteristics and mechanisms of gas-water EB flow in transparent experimental boreholes during production logging, combined with an analysis of the production log response characteristics and experimental production logging flow pattern maps, a method for flow pattern identification relying on log responses and a drift-flux model were proposed for gas-water EB flow. This model, built upon experimental data of EB flow, reveals physical mechanisms of gas-water EB flow during measurement processing. The coefficients it contains are the specific values under experimental conditions and with the PLT string used in our experiments. These coefficients also reveal the interference with original downhole flow patterns by the PLT string. Due to the representativeness that our simulated flow experiments and PLT string possess, the model coefficients can be applied as empirical values of logging interpretation model parameters directly to real production logging data interpretation, when the measurement circumstances and PLT strings are similar.
基金supported by National Natural Science Foundation of China (No. 51176008)the Fundamental Research Funds for the Central Universities (No.2011YJS267)Jiangsu Key Laboratory of Process Enhancement & New Energy Equipment Technology(Nanjing University of Technology)
文摘The characteristics of the confined bubble and elongated bubble in subcooled flow boiling in a single horizontal rectangular microchannel with hydraulic diameter Dh=1mm are studied experimentally. The channel with 1 ×1mm cross section is fabricated in a thin copper plate whose confinement number is Co=2.8 and the degassed deionized water is used as the working fluid. Visualization on the confined and elongated bubbles inside the microchannel is carded out by employing a high-speed CCD camera with a rnicrolens. The recorded images are carefully analyzed to illustrate the behaviors of the confinement and elongation processes of the bubble. The boiling number is used as an adjustable parameter to regulate the operating conditions which is eventually found to take a vital role in the bubble elongation process. Two formation patterns of the confined and elongated bubble are identified and the interactions between the neighboring confined and elongated bubbles are elucidated.
基金supported by National Natural Science Foundation of China(No.51176008)National Key Technology R&D Program(No.2012BAB12B02)Jiangsu Key Laboratory of Process Enhancement&New Energy Equipment Technology(Nanjing University of Technology)
文摘The evaporating momentum force and the shear force acting on the meniscus of an evaporating and elongating bubble in flow boiling in microchannel have been investigated theoretically and numerically.The concept of the effective evaporation region and the theory of the liquid layer supplement between elongated bubble and microchannel are proposed,and the analytical expressions of the evaporating momentum force and shear force have been obtained.The relative importance of both forces has been determined by the method of magnitude analysis and numerical simulation.It has been found that the evaporating momentum force can always be neglected in analyzing the bubble elongation process and the motion law of meniscus of elongated bubble in microchannel flow boiling,but whether the shear force should be considered or not is determined by its relative order of magnitude and the particular conditions such as channel dimension and the operating conditions.