High temperature-induced hypocotyl elongation is a typical thermomorphogenesis trait that may significantly affect early seedling growth and subsequent crop yield.The ambient temperature and endogenous auxin are two c...High temperature-induced hypocotyl elongation is a typical thermomorphogenesis trait that may significantly affect early seedling growth and subsequent crop yield.The ambient temperature and endogenous auxin are two critical factors that regulate hypocotyl growth.However,the mechanism of temperature and auxin integration in horticultural plants remains poorly understood.In this study,the roles of the basic helix-loop-helix transcription factor CsPIF4 in regulating auxin biosynthesis genes and the auxin content in the hypocotyl of cucumber(Cucumis sativus L.)seedlings under high temperature were investigated.qRT-PCR and in situ hybridization analysis revealed that expression of CsPIF4 was enhanced in the epidermis and vascular bundles in the hypocotyl of cucumber seedlings in response to high temperature.qRT-PCR and HPLC analysis showed that CsPIF4 positively regulated transcription of the auxin biosynthesis gene CsYUC8 and the auxin content in the hypocotyl under high temperature(35℃).The CRISPR/Cas9-mediated knockout of CsPIF4 resulted in a shorter hypocotyl compared with that of the wild type,together with decreased expression of CsYUC8 and lower auxin content in response to high temperature.Furthermore,biochemical assays showed that CsPIF4 could bind directly to the G-box motif of the CsYUC8 promoter and thereby activate CsYUC8 expression.These findings provide insight into the molecular mechanism of high temperature-mediated hypocotyl elongation in cucumber.展开更多
Seeds of soybeans and mung beans were soaked into five different concentrations (0, 0.05, 0.10, 0.20, 0.30 mg/L) of natural brassinolide ( NBR ) solution. According to the results, natural brassinolide treatment c...Seeds of soybeans and mung beans were soaked into five different concentrations (0, 0.05, 0.10, 0.20, 0.30 mg/L) of natural brassinolide ( NBR ) solution. According to the results, natural brassinolide treatment could improve seed germination rate and hypocotyl-radicle ratio of soybeans and mung beans and promote the growth of sprouts. To be specific, seed germination rate of soybeans reached the highest in 0.05 mg/L natural brassinolide treatment, which was im- proved by 25.0 percentage points compared with the control group, and the sprout length was improved by 4.33 em; 0.30 mg/L natural brassinolide exhibited the most significant promotion effect on seed germination and sprout growth of mung beans, seed germination rate was improved by 18.3 percentage points and sprout length was improved by 7.29 cm; hypocotyl-radiele ratio of soybean and mung bean sprouts reached the highest (2.96, 1.43 ) in 0.05 mg/L natural brassinolide treatment.展开更多
Ambient temperature induces the hypocotyl elongation of seedling,called as thermomorphogenesis.It has been reported that the bHLH transcriptional factor PIF7 acts as the critical component to modulate plant thermomorp...Ambient temperature induces the hypocotyl elongation of seedling,called as thermomorphogenesis.It has been reported that the bHLH transcriptional factor PIF7 acts as the critical component to modulate plant thermomorphogenesis,but the underlying mechanism remains elusive.The phytohormone abscisic acid(ABA)suppresses the hypocotyl elongation under high temperature(HT)stress.As the ABI5 binding protein,AFP2 acts as the negative factor to control ABA signaling.In this study,we first identified AFP2 as the interaction protein of PIF7 in vitro and in vivo.Phenotype analysis revealed that overexpressing AFP2 reduced the hypocotyl elongation,while loss-of-function afp2 mutant showed longer hypocotyl under HT.Consistently,overexpressing AFP2 impaired the transactivation effect of PIF7 on auxin biosynthesis related genes YUC8 and IAA19,which possibly resulted into the shorter hypocotyl in the transgenic line overexpressing AFP2 or co-overexpressing AFP2 and PIF7.Thus,these data suggest that AFP2 suppressed PIF7 activity to suppress hypocotyl elongation.Furthermore,we found that HT gradually induced the degradation of AFP2 that possibly released the inhibitory effect of AFP2 on PIF7,thus induced hypocotyl elongation under HT.Taken together,our result reveals the novel function of AFP2 in coordinating thermomorphogenesis through sophistically modulating PIF7 activity.展开更多
The germination capacity of Ailanthus altissima seeds improved after the seeds were soaked with different concentrations of natural brassinolide (NBR). The germination rate and germination energy of the seeds increa...The germination capacity of Ailanthus altissima seeds improved after the seeds were soaked with different concentrations of natural brassinolide (NBR). The germination rate and germination energy of the seeds increased by 17.6% and 18.8%, and the mean germination speed (i.e., germination time) of the seeds was shortened by 1.4 d under the optimal concentration (0.4 mg·L^-1) treatment, compared with the control. After hypocotyls of A.altissima were treated with NBR, the elongation of the hypocotyls increased. Among different concentrations of the NBR, 0.4 mg·L^-1 NBR appeared to be the optimal concentration for the elongation of A.altissima hypocotyls.展开更多
Hypocotyl development in Arabidopsis thaliana is regulated by light and endogenous hormonal cues, mak- ing it an ideal model to study the interplay between light and endogenous growth regulators. BBX21, a B-box (BBX...Hypocotyl development in Arabidopsis thaliana is regulated by light and endogenous hormonal cues, mak- ing it an ideal model to study the interplay between light and endogenous growth regulators. BBX21, a B-box (BBX)-Iike zinc-finger transcription factor, integrates light and abscisic acid signals to regulate hypocotyl elongation in Arabidopsis. Heterotrimeric G-proteins are pivotal regulators of plant development. The short hypocotyl phenotype of the G-protein I^-subunit (AGB1) mutant (agbl-2) has been previously identified, but the precise role of AGB1 in hypocotyl elongation remains enigmatic. Here, we show that AGB1 directly interacts with BBX21, and the short hypocotyl phenotype of agbl-2 is partially suppressed in agb1-2bbx21-1 double mutant. BBX21 functions in the downstream of AGB1 and overexpression of BBX21 in agbl-2 causes a more pronounced reduction in hypocotyl length, indicating that AGB1 plays an oppositional role in relation to BBX21 during hypocotyl development. Furthermore, we demonstrate that the C-terminal region of BBX21 is important for both its intracellular localization and its transcriptional activation activity that is inhibited by interaction with AGB1. ChiP assays showed that BBX21 specifically associates with its own promoter and with those of BBX22, HY5, and GA2oxl. which is not altered in agbl-2. These data suggest that the AGB1-BBX21 interaction only affects the transcrip- tional activation activity of BBX21 but has no effect on its DNA binding ability. Taken together, our data demonstrate that AGB1 positively promotes hypocotyl elongation through repressing BBX21 activity.展开更多
Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,...Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,we established a sand-culture method to screen pingyangmycin mutagenized peanut lines based on their specific response to ethylene(“triple response”).An ethylene-insensitive mutant,inhibition of peanut hypocotyl elongation 1(iph1),was identified that showed reduced sensitivity to ethylene in both hypocotyl elongation and root growth.Through bulked segregant analysis sequencing,a major gene related to iph1,named AhIPH1,was preliminarily mapped at the chromosome Arahy.01,and further narrowed to a 450-kb genomic region through substitution mapping strategy.A total of 7014 genes were differentially expressed among the ACC treatment through RNA-seq analysis,of which only the Arahy.5BLU0Q gene in the candidate mapping interval was differentially expressed between WT and mutant iph1.Integrating sequence variations,functional annotation and transcriptome analysis revealed that a predicated gene,Arahy.5BLU0Q,encoding SNF1 protein kinase,may be the candidate gene for AhIPH1.This gene contained two single-nucleotide polymorphisms at promoter region and was more highly expressed in iph1 than WT.Our findings reveal a novel ethylene-responsive gene,which provides a theoretical foundation and new genetic resources for the mechanism of ethylene signaling in peanuts.展开更多
The circadian clock entrained by environmental light-dark cycles enables plants to fine-tune diurnal growth and developmental responses.Here,we show that physical interactions among evening clock components,including ...The circadian clock entrained by environmental light-dark cycles enables plants to fine-tune diurnal growth and developmental responses.Here,we show that physical interactions among evening clock components,including PSEUDO-RESPONSE REGULATOR 5(PRR5),TIMING OF CAB EXPRESSION 1(TOC1),and the Evening Complex(EC)component EARLY FLOWERING 3(ELF3),define a diurnal repressive chromatin structure specifically at the PHYTOCHROME-INTERACTING FACTOR 4(PIF4)locus in Arabidopsis.These three clock components act interdependently as well as independently to repress nighttime hypocotyl elongation,as hypocotyl elongation rate dramatically increased specifically at nighttime in the prr5-1 toc1-21 elf3-1 mutant,concomitantly with a substantial increase in PIF4 expression.Transcriptional repression of PIF4 by ELF3,PRR5,and TOC1 is mediated by the SWI2/SNF2-RELATED(SWR1)chromatin remodeling complex,which incorporates histone H2A.Z at thePIF4 locus,facilitating robust epigenetic suppression ofPIF4 during the evening.Overall,these findings demonstrate that the PRR-EC-SWR1 complex represses hypocotyl elongation at night through a distinctive chromatin domain covering PIF4 chromatin.展开更多
PIN-FORMED(PIN)-dependent directional auxin transport is crucial for plant development. Although the redistribution of auxin mediated by the polarization of PIN3 plays key roles in modulating hypocotyl cell expansion,...PIN-FORMED(PIN)-dependent directional auxin transport is crucial for plant development. Although the redistribution of auxin mediated by the polarization of PIN3 plays key roles in modulating hypocotyl cell expansion, how PIN3 becomes repolarized to the proper sites within hypocotyl cells is poorly understood. We previously generated the clathrin light chain clc2-1 clc3-1 double mutant in Arabidopsis thaliana and found that it has an elongated hypocotyl phenotype compared to the wild type. Here, we performed genetic, cell biology, and pharmacological analyses combined with live-cell imaging to elucidate the molecular mechanism underlying the role of clathrin light chains in hypocotyl elongation. Our analyses indicated that the defects of the double mutant enhanced auxin maxima in epidermal cells, thus, promoting hypocotyl elongation. PIN3 relocated to the lateral sides of hypocotyl endodermal cells in clc2-1 clc3-1 mutants to redirect auxin toward the epidermal cell layers.Moreover, the loss of function of PIN3 largely suppressed the long hypocotyl phenotype of the clc2-1 clc3-1 double mutant, as did treatment with auxin transport inhibitors. Based on these data, we propose that clathrin modulates PIN3 abundance and polarity to direct auxin flux and inhibit cell elongation in the hypocotyl, providing novel insights into the regulation of hypocotyl elongation.展开更多
For shade-intolerant plants,a reduction in the red/far-red(R:FR)light ratio signals the close proximity of competitors and triggers shade-avoidance syndrome(SAS).Auxin,brassinosteroid,gibberellin and some transcriptio...For shade-intolerant plants,a reduction in the red/far-red(R:FR)light ratio signals the close proximity of competitors and triggers shade-avoidance syndrome(SAS).Auxin,brassinosteroid,gibberellin and some transcriptional regulators have been reported to regulate shade-induced hypocotyl elongation.However,little is understood regarding the coordination of these multiple regulatory pathways.Here,combining time-lapse growth rates and transcriptomic data,we demonstrate that auxin and brassinosteroid affect two phases of shade-induced rapid growth,whereas gibberellin mainly contributes to the second rapid growth phase.PHYTOCHROME-INTERACTING FACTOR 7(PIF7)acts earlier than other PIFs.PIF4 and PIF5 modulate the second rapid growth phase.LONG HYPOCOTYL IN FAR-RED 1(HFR1)and PIF3-LIKE 1(PIL1)modulate two rapid growth phases.Our results reveal that hormonal and transcriptional regulatory programs act together to coordinate dynamic hypocotyl changes in an immediate response to a shade signal and provide a novel understanding of growth kinetics in a changing environment.展开更多
The germination capacity of Pinus tabulaeformis seeds was obviously improved after the seeds were soaked with the different concentrations of natural brassinolide. The germination rate and germination energy of the se...The germination capacity of Pinus tabulaeformis seeds was obviously improved after the seeds were soaked with the different concentrations of natural brassinolide. The germination rate and germination energy of the seeds were increased by 23 1% and 14 94% respectively, and the mean germination speed ( i.e. germination time) of the seeds was cut down by 1 day under the best concentration (0 05?mg·L -1 ) treatment, compared with the control. After Robinia pseudoacacia seeds were treated with the best concentration(0 1?mg·L -1 ) of natural brassinolide, the germination rate and germination energy of the seeds were increased by 10 9% and 15 9% respectively, and the mean germination speed of the seeds was cut down by 1 26 day, compared with the control. After hypocotyls of Pinus tabulaeformis and Robinia pseudoacacia were treated with the natural brassinolide, the elongation of their hypocotyls was obviously increased. 0 01?mg·L -1 concentration of the natural brassinolide was the most suitable for the elongation of Pinus tabulaeformis hypocotyls,and 0 005?mg·L -1 concentration was the best for the elongation of Robinia pseudoacacia hypocotyls.展开更多
基金the China Postdoctoral Science Foundation(Grant No.2021M703530)the National Natural Science Foundation of China(Grant No.31972398).
文摘High temperature-induced hypocotyl elongation is a typical thermomorphogenesis trait that may significantly affect early seedling growth and subsequent crop yield.The ambient temperature and endogenous auxin are two critical factors that regulate hypocotyl growth.However,the mechanism of temperature and auxin integration in horticultural plants remains poorly understood.In this study,the roles of the basic helix-loop-helix transcription factor CsPIF4 in regulating auxin biosynthesis genes and the auxin content in the hypocotyl of cucumber(Cucumis sativus L.)seedlings under high temperature were investigated.qRT-PCR and in situ hybridization analysis revealed that expression of CsPIF4 was enhanced in the epidermis and vascular bundles in the hypocotyl of cucumber seedlings in response to high temperature.qRT-PCR and HPLC analysis showed that CsPIF4 positively regulated transcription of the auxin biosynthesis gene CsYUC8 and the auxin content in the hypocotyl under high temperature(35℃).The CRISPR/Cas9-mediated knockout of CsPIF4 resulted in a shorter hypocotyl compared with that of the wild type,together with decreased expression of CsYUC8 and lower auxin content in response to high temperature.Furthermore,biochemical assays showed that CsPIF4 could bind directly to the G-box motif of the CsYUC8 promoter and thereby activate CsYUC8 expression.These findings provide insight into the molecular mechanism of high temperature-mediated hypocotyl elongation in cucumber.
基金Supported by Key Joint Foundation for Fostering Talents of NSFC-Henan Province(U1204307)Key Project of Science and Technology of Henan Province(102102110155,142102110173,152102210334)Cultivation Fund of Luoyang Normal University(2013-PYJJ-001,10000993)
文摘Seeds of soybeans and mung beans were soaked into five different concentrations (0, 0.05, 0.10, 0.20, 0.30 mg/L) of natural brassinolide ( NBR ) solution. According to the results, natural brassinolide treatment could improve seed germination rate and hypocotyl-radicle ratio of soybeans and mung beans and promote the growth of sprouts. To be specific, seed germination rate of soybeans reached the highest in 0.05 mg/L natural brassinolide treatment, which was im- proved by 25.0 percentage points compared with the control group, and the sprout length was improved by 4.33 em; 0.30 mg/L natural brassinolide exhibited the most significant promotion effect on seed germination and sprout growth of mung beans, seed germination rate was improved by 18.3 percentage points and sprout length was improved by 7.29 cm; hypocotyl-radiele ratio of soybean and mung bean sprouts reached the highest (2.96, 1.43 ) in 0.05 mg/L natural brassinolide treatment.
基金funded by the National Natural Science Foundation of China(Grant No.31970289).
文摘Ambient temperature induces the hypocotyl elongation of seedling,called as thermomorphogenesis.It has been reported that the bHLH transcriptional factor PIF7 acts as the critical component to modulate plant thermomorphogenesis,but the underlying mechanism remains elusive.The phytohormone abscisic acid(ABA)suppresses the hypocotyl elongation under high temperature(HT)stress.As the ABI5 binding protein,AFP2 acts as the negative factor to control ABA signaling.In this study,we first identified AFP2 as the interaction protein of PIF7 in vitro and in vivo.Phenotype analysis revealed that overexpressing AFP2 reduced the hypocotyl elongation,while loss-of-function afp2 mutant showed longer hypocotyl under HT.Consistently,overexpressing AFP2 impaired the transactivation effect of PIF7 on auxin biosynthesis related genes YUC8 and IAA19,which possibly resulted into the shorter hypocotyl in the transgenic line overexpressing AFP2 or co-overexpressing AFP2 and PIF7.Thus,these data suggest that AFP2 suppressed PIF7 activity to suppress hypocotyl elongation.Furthermore,we found that HT gradually induced the degradation of AFP2 that possibly released the inhibitory effect of AFP2 on PIF7,thus induced hypocotyl elongation under HT.Taken together,our result reveals the novel function of AFP2 in coordinating thermomorphogenesis through sophistically modulating PIF7 activity.
文摘The germination capacity of Ailanthus altissima seeds improved after the seeds were soaked with different concentrations of natural brassinolide (NBR). The germination rate and germination energy of the seeds increased by 17.6% and 18.8%, and the mean germination speed (i.e., germination time) of the seeds was shortened by 1.4 d under the optimal concentration (0.4 mg·L^-1) treatment, compared with the control. After hypocotyls of A.altissima were treated with NBR, the elongation of the hypocotyls increased. Among different concentrations of the NBR, 0.4 mg·L^-1 NBR appeared to be the optimal concentration for the elongation of A.altissima hypocotyls.
文摘Hypocotyl development in Arabidopsis thaliana is regulated by light and endogenous hormonal cues, mak- ing it an ideal model to study the interplay between light and endogenous growth regulators. BBX21, a B-box (BBX)-Iike zinc-finger transcription factor, integrates light and abscisic acid signals to regulate hypocotyl elongation in Arabidopsis. Heterotrimeric G-proteins are pivotal regulators of plant development. The short hypocotyl phenotype of the G-protein I^-subunit (AGB1) mutant (agbl-2) has been previously identified, but the precise role of AGB1 in hypocotyl elongation remains enigmatic. Here, we show that AGB1 directly interacts with BBX21, and the short hypocotyl phenotype of agbl-2 is partially suppressed in agb1-2bbx21-1 double mutant. BBX21 functions in the downstream of AGB1 and overexpression of BBX21 in agbl-2 causes a more pronounced reduction in hypocotyl length, indicating that AGB1 plays an oppositional role in relation to BBX21 during hypocotyl development. Furthermore, we demonstrate that the C-terminal region of BBX21 is important for both its intracellular localization and its transcriptional activation activity that is inhibited by interaction with AGB1. ChiP assays showed that BBX21 specifically associates with its own promoter and with those of BBX22, HY5, and GA2oxl. which is not altered in agbl-2. These data suggest that the AGB1-BBX21 interaction only affects the transcrip- tional activation activity of BBX21 but has no effect on its DNA binding ability. Taken together, our data demonstrate that AGB1 positively promotes hypocotyl elongation through repressing BBX21 activity.
基金supported by the National Natural Science Foundation of China(32001578)Qingdao Science&Technology Key Projects(22-1-3-1-zyyd-nsh,23-1-3-8-zyyd-nsh)+1 种基金Salt-Alkali Agriculture Industry System of Shandong Province(SDAIT-29-03)Science&Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta(2022SZX19)。
文摘Ethylene plays essential roles in plant growth,development and stress responses.The ethylene signaling pathway and molecular mechanism have been studied extensively in Arabidopsis and rice but limited in peanuts.Here,we established a sand-culture method to screen pingyangmycin mutagenized peanut lines based on their specific response to ethylene(“triple response”).An ethylene-insensitive mutant,inhibition of peanut hypocotyl elongation 1(iph1),was identified that showed reduced sensitivity to ethylene in both hypocotyl elongation and root growth.Through bulked segregant analysis sequencing,a major gene related to iph1,named AhIPH1,was preliminarily mapped at the chromosome Arahy.01,and further narrowed to a 450-kb genomic region through substitution mapping strategy.A total of 7014 genes were differentially expressed among the ACC treatment through RNA-seq analysis,of which only the Arahy.5BLU0Q gene in the candidate mapping interval was differentially expressed between WT and mutant iph1.Integrating sequence variations,functional annotation and transcriptome analysis revealed that a predicated gene,Arahy.5BLU0Q,encoding SNF1 protein kinase,may be the candidate gene for AhIPH1.This gene contained two single-nucleotide polymorphisms at promoter region and was more highly expressed in iph1 than WT.Our findings reveal a novel ethylene-responsive gene,which provides a theoretical foundation and new genetic resources for the mechanism of ethylene signaling in peanuts.
基金supported by the Basic Science Research(NRF2022R1A2B5B02001266 to P.J.S.and NRF-2023R1A2C3002386 to E.O.)Basic Research Laboratory(NRF-2022R1A4A3024451)programs provided by the National Research Foundation of Korea.
文摘The circadian clock entrained by environmental light-dark cycles enables plants to fine-tune diurnal growth and developmental responses.Here,we show that physical interactions among evening clock components,including PSEUDO-RESPONSE REGULATOR 5(PRR5),TIMING OF CAB EXPRESSION 1(TOC1),and the Evening Complex(EC)component EARLY FLOWERING 3(ELF3),define a diurnal repressive chromatin structure specifically at the PHYTOCHROME-INTERACTING FACTOR 4(PIF4)locus in Arabidopsis.These three clock components act interdependently as well as independently to repress nighttime hypocotyl elongation,as hypocotyl elongation rate dramatically increased specifically at nighttime in the prr5-1 toc1-21 elf3-1 mutant,concomitantly with a substantial increase in PIF4 expression.Transcriptional repression of PIF4 by ELF3,PRR5,and TOC1 is mediated by the SWI2/SNF2-RELATED(SWR1)chromatin remodeling complex,which incorporates histone H2A.Z at thePIF4 locus,facilitating robust epigenetic suppression ofPIF4 during the evening.Overall,these findings demonstrate that the PRR-EC-SWR1 complex represses hypocotyl elongation at night through a distinctive chromatin domain covering PIF4 chromatin.
基金This work was supported by the National Natural Science Foundation of China(Nos.31801193,31820103008,91754104,and 31670283)the Fundamental Research Funds for the Central Universities(Nos.lzujbky-2018-28 and lzujbky-2020-it13)。
文摘PIN-FORMED(PIN)-dependent directional auxin transport is crucial for plant development. Although the redistribution of auxin mediated by the polarization of PIN3 plays key roles in modulating hypocotyl cell expansion, how PIN3 becomes repolarized to the proper sites within hypocotyl cells is poorly understood. We previously generated the clathrin light chain clc2-1 clc3-1 double mutant in Arabidopsis thaliana and found that it has an elongated hypocotyl phenotype compared to the wild type. Here, we performed genetic, cell biology, and pharmacological analyses combined with live-cell imaging to elucidate the molecular mechanism underlying the role of clathrin light chains in hypocotyl elongation. Our analyses indicated that the defects of the double mutant enhanced auxin maxima in epidermal cells, thus, promoting hypocotyl elongation. PIN3 relocated to the lateral sides of hypocotyl endodermal cells in clc2-1 clc3-1 mutants to redirect auxin toward the epidermal cell layers.Moreover, the loss of function of PIN3 largely suppressed the long hypocotyl phenotype of the clc2-1 clc3-1 double mutant, as did treatment with auxin transport inhibitors. Based on these data, we propose that clathrin modulates PIN3 abundance and polarity to direct auxin flux and inhibit cell elongation in the hypocotyl, providing novel insights into the regulation of hypocotyl elongation.
基金supported by the National Key R&D Program of China(2017YFA0503800)National Natural Science Foundation of China(NSFC32030018).
文摘For shade-intolerant plants,a reduction in the red/far-red(R:FR)light ratio signals the close proximity of competitors and triggers shade-avoidance syndrome(SAS).Auxin,brassinosteroid,gibberellin and some transcriptional regulators have been reported to regulate shade-induced hypocotyl elongation.However,little is understood regarding the coordination of these multiple regulatory pathways.Here,combining time-lapse growth rates and transcriptomic data,we demonstrate that auxin and brassinosteroid affect two phases of shade-induced rapid growth,whereas gibberellin mainly contributes to the second rapid growth phase.PHYTOCHROME-INTERACTING FACTOR 7(PIF7)acts earlier than other PIFs.PIF4 and PIF5 modulate the second rapid growth phase.LONG HYPOCOTYL IN FAR-RED 1(HFR1)and PIF3-LIKE 1(PIL1)modulate two rapid growth phases.Our results reveal that hormonal and transcriptional regulatory programs act together to coordinate dynamic hypocotyl changes in an immediate response to a shade signal and provide a novel understanding of growth kinetics in a changing environment.
文摘The germination capacity of Pinus tabulaeformis seeds was obviously improved after the seeds were soaked with the different concentrations of natural brassinolide. The germination rate and germination energy of the seeds were increased by 23 1% and 14 94% respectively, and the mean germination speed ( i.e. germination time) of the seeds was cut down by 1 day under the best concentration (0 05?mg·L -1 ) treatment, compared with the control. After Robinia pseudoacacia seeds were treated with the best concentration(0 1?mg·L -1 ) of natural brassinolide, the germination rate and germination energy of the seeds were increased by 10 9% and 15 9% respectively, and the mean germination speed of the seeds was cut down by 1 26 day, compared with the control. After hypocotyls of Pinus tabulaeformis and Robinia pseudoacacia were treated with the natural brassinolide, the elongation of their hypocotyls was obviously increased. 0 01?mg·L -1 concentration of the natural brassinolide was the most suitable for the elongation of Pinus tabulaeformis hypocotyls,and 0 005?mg·L -1 concentration was the best for the elongation of Robinia pseudoacacia hypocotyls.