Bacteria growth depends crucially on protein synthesis,which is limited by ribosome synthesis.Ribosomal RNA(rRNA)transcription is the rate-limiting step of ribosome synthesis.It is generally proposed that the transcri...Bacteria growth depends crucially on protein synthesis,which is limited by ribosome synthesis.Ribosomal RNA(rRNA)transcription is the rate-limiting step of ribosome synthesis.It is generally proposed that the transcriptional initiation rate of rRNA operon is the primary factor that controls the r RNA synthesis.In this study,we established a convenient GFP-based reporter approach for measuring the bacterial rRNA chain elongation rate.We showed that the rRNA chain elongation rate of Escherichia coli remains constant under nutrient limitation and chloramphenicol inhibition.In contrast,rRNA chain elongation rate decreases dramatically under low temperatures.Strikingly,we found that Vibrio natriegens,the fastest growing bacteria known,has a 50%higher rRNA chain elongation rate than E.coli,which contributes to its rapid ribosome synthesis.Our study demonstrates that r RNA chain elongation rate is another important factor that affects the bacterial ribosome synthesis capacity.展开更多
A compilation of data on biomass and growth allowed an examination of the intraspecific plasticity in Tha/assia hemprichii which played key roles to develop site-specific growth strategies for this species in Xincun B...A compilation of data on biomass and growth allowed an examination of the intraspecific plasticity in Tha/assia hemprichii which played key roles to develop site-specific growth strategies for this species in Xincun Bay. The results showed the difference in rhizome elongation rates which explained most of the variation of biomass and growth within species. The seagrass T. hempdchii in Xincun Bay adjusted its vertical and horizontal rhizome elongation rates alternatively in response to light level and temperature changes, resulting in the variation of shoot densities and above biomass in return. The vertical and horizontal rhizomes elongated at rates of 2.38 and 24.4 cm yr1 in summer while 1.87 and 29.2 cm yr^-1 in winter respectively. The shoot density ranged from 822 to 941 shoots m^2 with a peak in summer and a trough in winter which was similar to that of biomass. The growth strategy enabled T. hempdchii to minimize the negative effects of desiccation in summer as well as light reduction in winter.展开更多
Currently many facets of genetic information are illdefined. In particular, how protein folding is genetically regulated has been a long-standing issue for genetics and protein biology. And a generic mechanistic model...Currently many facets of genetic information are illdefined. In particular, how protein folding is genetically regulated has been a long-standing issue for genetics and protein biology. And a generic mechanistic model with supports of genomic data is still lacking. Recent technological advances have enabled much needed genome-wide experiments. While putting the effect of codon optimality on debate, these studies have supplied mounting evidence suggesting a role of m RNA structure in the regulation of protein folding by modulating translational elongation rate. In conjunctions with previous theories, this mechanistic model of protein folding guided by m RNA structure shall expand our understandings of genetic information and offer new insights into various biomedical puzzles.展开更多
基金the National Natural Science Foundation of China(31700089,31700039,31870028 and 31970027)self-determined research funds of CCNU from the colleges’basic research and operation of MOE(CCNU18KFY01,CCNU19TS028 and CCNU20TS023)。
文摘Bacteria growth depends crucially on protein synthesis,which is limited by ribosome synthesis.Ribosomal RNA(rRNA)transcription is the rate-limiting step of ribosome synthesis.It is generally proposed that the transcriptional initiation rate of rRNA operon is the primary factor that controls the r RNA synthesis.In this study,we established a convenient GFP-based reporter approach for measuring the bacterial rRNA chain elongation rate.We showed that the rRNA chain elongation rate of Escherichia coli remains constant under nutrient limitation and chloramphenicol inhibition.In contrast,rRNA chain elongation rate decreases dramatically under low temperatures.Strikingly,we found that Vibrio natriegens,the fastest growing bacteria known,has a 50%higher rRNA chain elongation rate than E.coli,which contributes to its rapid ribosome synthesis.Our study demonstrates that r RNA chain elongation rate is another important factor that affects the bacterial ribosome synthesis capacity.
基金supported by UNEP and Global Environment Foundation (No. UNEP/GEF/SCS/Chi/MoU2c)the Key Innovation Project of Chinese Academy of Science ((No. KSCZ2-SW-132)the National Natural Science Foundation of China (No. 40576052 and No. U0633007)
文摘A compilation of data on biomass and growth allowed an examination of the intraspecific plasticity in Tha/assia hemprichii which played key roles to develop site-specific growth strategies for this species in Xincun Bay. The results showed the difference in rhizome elongation rates which explained most of the variation of biomass and growth within species. The seagrass T. hempdchii in Xincun Bay adjusted its vertical and horizontal rhizome elongation rates alternatively in response to light level and temperature changes, resulting in the variation of shoot densities and above biomass in return. The vertical and horizontal rhizomes elongated at rates of 2.38 and 24.4 cm yr1 in summer while 1.87 and 29.2 cm yr^-1 in winter respectively. The shoot density ranged from 822 to 941 shoots m^2 with a peak in summer and a trough in winter which was similar to that of biomass. The growth strategy enabled T. hempdchii to minimize the negative effects of desiccation in summer as well as light reduction in winter.
基金supported by the start-up grant from“Top 100 Talents Program”of Sun Yat-sen University to JRY(50000-31131114)General Program of National Natural Science Foundation of China to JRY(31671320)
文摘Currently many facets of genetic information are illdefined. In particular, how protein folding is genetically regulated has been a long-standing issue for genetics and protein biology. And a generic mechanistic model with supports of genomic data is still lacking. Recent technological advances have enabled much needed genome-wide experiments. While putting the effect of codon optimality on debate, these studies have supplied mounting evidence suggesting a role of m RNA structure in the regulation of protein folding by modulating translational elongation rate. In conjunctions with previous theories, this mechanistic model of protein folding guided by m RNA structure shall expand our understandings of genetic information and offer new insights into various biomedical puzzles.