Applied linguistics means a wide range of actions which include addressing a few language-based problems or solving some language-based concerns.Emails stay in the leading positions for business as well as personal us...Applied linguistics means a wide range of actions which include addressing a few language-based problems or solving some language-based concerns.Emails stay in the leading positions for business as well as personal use.This popularity grabs the interest of individuals with malevolent inten-tions—phishing and spam email assaults.Email filtering mechanisms were developed incessantly to follow unwanted,malicious content advancement to protect the end-users.But prevailing solutions were focused on phishing email filtering and spam and whereas email labelling and analysis were not fully advanced.Thus,this study provides a solution related to email message body text automatic classification into phishing and email spam.This paper presents an Improved Fruitfly Optimization with Stacked Residual Recurrent Neural Network(IFFO-SRRNN)based on Applied Linguistics for Email Classification.The presented IFFO-SRRNN technique examines the intrinsic features of email for the identification of spam emails.At the preliminary level,the IFFO-SRRNN model follows the email pre-processing stage to make it compatible with further computation.Next,the SRRNN method can be useful in recognizing and classifying spam emails.As hyperparameters of the SRRNN model need to be effectually tuned,the IFFO algorithm can be utilized as a hyperparameter optimizer.To investigate the effectual email classification results of the IFFO-SRDL technique,a series of simulations were taken placed on public datasets,and the comparison outcomes highlight the enhancements of the IFFO-SRDL method over other recent approaches with an accuracy of 98.86%.展开更多
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R281)Princess Nourah bint Abdulrahman University,Riyadh,SaudiArabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4331004DSR31).
文摘Applied linguistics means a wide range of actions which include addressing a few language-based problems or solving some language-based concerns.Emails stay in the leading positions for business as well as personal use.This popularity grabs the interest of individuals with malevolent inten-tions—phishing and spam email assaults.Email filtering mechanisms were developed incessantly to follow unwanted,malicious content advancement to protect the end-users.But prevailing solutions were focused on phishing email filtering and spam and whereas email labelling and analysis were not fully advanced.Thus,this study provides a solution related to email message body text automatic classification into phishing and email spam.This paper presents an Improved Fruitfly Optimization with Stacked Residual Recurrent Neural Network(IFFO-SRRNN)based on Applied Linguistics for Email Classification.The presented IFFO-SRRNN technique examines the intrinsic features of email for the identification of spam emails.At the preliminary level,the IFFO-SRRNN model follows the email pre-processing stage to make it compatible with further computation.Next,the SRRNN method can be useful in recognizing and classifying spam emails.As hyperparameters of the SRRNN model need to be effectually tuned,the IFFO algorithm can be utilized as a hyperparameter optimizer.To investigate the effectual email classification results of the IFFO-SRDL technique,a series of simulations were taken placed on public datasets,and the comparison outcomes highlight the enhancements of the IFFO-SRDL method over other recent approaches with an accuracy of 98.86%.