期刊文献+
共找到3,242篇文章
< 1 2 163 >
每页显示 20 50 100
Numerical analysis of geosynthetic-reinforced embankment performance under moving loads
1
作者 Xuanming Ding Jinqiao Zhao +1 位作者 Qiang Ou Jianfei Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期682-696,共15页
The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without ... The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without drainage consolidation was established using the finite element software ABAQUS.In this model,the traffic loads were simulated by two moving loads of rectangular pattern,and their amplitude,range,and moving speed were realized by a Fortran subroutine.The embankment fill was simulated by an equivalent linear viscoelastic model,which can reflect its viscoelasticity.The geogrid was simulated by the truss element,and the geocell was simulated by the membrane element.Infinite elements were utilized to weaken the boundary effect caused by the model geometry at the boundaries.Validation of the established numerical model was conducted by comparing the predicted deformations in the cross-section of the geosynthetic-reinforced embankment with those from the existing literature.On this basis,the dynamic stress and strain distribution in the pavement structure layer of the geosynthetic-reinforced embankment under a moving load was also analyzed.Finally,a parametric study was conducted to examine the influences of the different types of reinforcement,overload,and the moving load velocity on the geosynthetic-reinforced embankment. 展开更多
关键词 Geosynthetic-reinforced layer Numerical model Moving load embankment deformation Stress
下载PDF
Behavior of soil lateral deformation under embankments 被引量:1
2
作者 余闯 刘松玉 《Journal of Southeast University(English Edition)》 EI CAS 2005年第1期78-81,共4页
Based on analysis of additional horizontal stress in the soil underembankment load, the behavior of the lateral deformation of the soil along the depth is studied. Theresult shows that the distribution of lateral defo... Based on analysis of additional horizontal stress in the soil underembankment load, the behavior of the lateral deformation of the soil along the depth is studied. Theresult shows that the distribution of lateral deformation along the depth is arch-shaped, whichcorresponds nicely with the observed data. According to this, a new prediction model is establishedto forecast the lateral deformation. The shapes of the model curve with three parameters in themodel a, b and c are presented. The three parameters can easily be determined by three measured data(s_0, 0), (s_1, h_0)and (s_2, 2h_0). This model is applied to study two cases. The comparisonsillustrate that the displacement predicted by the model corresponds nicely with the measured data. 展开更多
关键词 lateral deformation embankment PREDICTION additional stress
下载PDF
A system for automated monitoring of embankment deformation along the Qinghai-Tibet Railway in permafrost regions 被引量:2
3
作者 YongPeng Yang YaoHui Qu +2 位作者 HanCheng Cai JiaCheng CaiMei Tang 《Research in Cold and Arid Regions》 CSCD 2015年第5期560-567,共8页
At present, the monitoring of embankment deformation in permafrost regions along the Qinghai-Tibet Railway is mainly done manually. However, the harsh climate on the plateau affects the results greatly by lowering the... At present, the monitoring of embankment deformation in permafrost regions along the Qinghai-Tibet Railway is mainly done manually. However, the harsh climate on the plateau affects the results greatly by lowering the observation frequency, so the manual monitoring can barely meet the observational demand. This research develops a system of automated monitoring of embankment deformation, and aims to address the problems caused by the plateau climate and the perma- frost conditions in the region. The equipment consists of a monitoring module, a data collection module, a transmission module, and a data processing module. The field experiments during this program indicate that (1) the combined auto- mated monitoring device overcame the problems associated with the complicated and tough plateau environment by means of wireless transmission and automatic analysis of the embankment settlement data; (2) the calibration of the combined settlement gauge at -20 ℃ was highly accurate, with an error rate always 〈0.5%; (3) the gauge calibration at high-temperature conditions was also highly accurate, with an error rate 〈0.5% even though the surface of the instrument reached more than 50 ℃; and (4) compared with the data manually taken, the data automatically acquired during field monitoring experiments demonstrated that the combined settlement gauge and the automated monitoring system could meet the requirements of the monitoring mission in permafrost regions along the Qinghai-Tibet Railway. 展开更多
关键词 Qinghai-Tibet Railway PERMAFROST automated monitoring of embankment deformation reliability analysis
下载PDF
Deformation and failure modes of composite foundation with sub-embankment plain concrete piles 被引量:2
4
作者 Qian Su JunJie Huang 《Research in Cold and Arid Regions》 CSCD 2013年第5期614-625,共12页
With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on... With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented. 展开更多
关键词 centrifuge model test composite foundation plain concrete pile deformation and failure modes embankment soft ground
下载PDF
Impact of permafrost degradation on embankment deformation of Qinghai-Tibet Highway in permafrost regions 被引量:7
5
作者 彭惠 马巍 +1 位作者 穆彦虎 金龙 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1079-1086,共8页
Based on long-term monitoring data, the relationships between permafrost degradation and embankment deformation are analyzed along the Qinghai-Tibet Highway(QTH). Due to heat absorbing effect of asphalt pavement and c... Based on long-term monitoring data, the relationships between permafrost degradation and embankment deformation are analyzed along the Qinghai-Tibet Highway(QTH). Due to heat absorbing effect of asphalt pavement and climate warming,permafrost beneath asphalt pavement experienced significant warming and degradation. During the monitoring period, warming amplitude of the soil at depth of 5 m under asphalt ranged from 0.21 °C at the XD1 site to 0.5 °C at the KL1 site. And at depth of 10 m, the increase amplitude of ground temperature ranged from 0.47 °C at the NA1 site to 0.07 °C at the XD1 site. Along with ground temperature increase, permafrost table beneath asphalt pavement decline considerably. Amplitude of permafrost table decline varied from 0.53 m at the KL1 site to 3.51 m at the NA1 site, with mean amplitude of 1.65 m for 8 monitoring sites during the monitoring period. Due to permafrost warming and degradation, the embankment deformation all performed as settlement at these sites. At present, those settlements still develop quickly and are expected to continue to increase in the future. The embankment deformations can be divided into homogeneous deformation and inhomogeneous deformation. Embankment longitudinal inhomogeneous deformation causes the wave deformations and has adverse effects on driving comfort and safety, while lateral inhomogeneous deformation causes longitudinal cracks and has an adverse effect on stability. Corresponding with permafrost degradation processes,embankment settlement can be divided into four stages. For QTH, embankment settlement is mainly comprised of thawing consolidation of ice-rich permafrost and creep of warming permafrost beneath permafrost table. 展开更多
关键词 Qinghai-Tibet Highway(QTH) permafrost degradation embankment deformation thawing settlement
下载PDF
Dynamic Risk Analysis of Permanent Deformation of Sea Embankment
6
作者 高玉峰 刘汉龙 余湘娟 《China Ocean Engineering》 SCIE EI 2001年第1期107-116,共10页
For evaluation of the permanent deformation of a sea embankment under stochastic earthquake excitation, a robust dynamic risk analytical method is presented based on conventional permanent deformation analysis and sto... For evaluation of the permanent deformation of a sea embankment under stochastic earthquake excitation, a robust dynamic risk analytical method is presented based on conventional permanent deformation analysis and stochastic seismic response analysis. This method can predict not only the mean value of maximum permanent deformation but also the reliability corresponding to different deformation control standards. The earthquake motion is modelled as a stationary Gaussian filtered white noise random process. The predicted average maximum horizontal permanent displacement is in agreement with the conventional result, Further studied are the reliability of permanent deformation due to stochastic wave details at one seismic motion level and the risk of permanent deformation due to stochastic seismic strength, i. e., the maximum acceleration in a long period. Therefore, it is possible to make the optimal design in terms of safety and economy according to the importance of a sea embankment. It is suggested that the improved stochastic seismic model that can catch the behavior of the non-stationary random process For sea embankments should be further studied in future. 展开更多
关键词 stochastic earthquake risk analysis permanent deformation sea embankment
下载PDF
Finite element analysis on deformation of high embankment in heavy-haul railway subjected to freeze-thaw cycles
7
作者 ChengYi Yu Shuang Tian +2 位作者 Liang Tang XianZhang Ling GuoQing Zhou 《Research in Cold and Arid Regions》 CSCD 2015年第4期421-429,共9页
Finite element simulations are increasingly providing a versatile environment for this topic. In this study, a two-dimensional finite element analysis is conducted to predict the deformation of high embankment in Bazh... Finite element simulations are increasingly providing a versatile environment for this topic. In this study, a two-dimensional finite element analysis is conducted to predict the deformation of high embankment in Bazhun heavy-haul railway, China. A recently developed nonlinear softening-type constitutive model is utilized to model the be- havior of subgrade filling materials subjected to freeze-thaw cycles. For the convenience of practical application, the dynamic loading induced by a vehicle is treated as a quasi-static axle load. The deformation of this embankment with different moisture content under freeze-thaw cycles is compared. The results show that when subjected to the first freeze-thaw cycle, the embankment experienced significant deformation variations. Maximum deformation was usually achieved after the embankment with optimum moisture content experienced six freeze-thaw cycles, however, the em- bankment with moisre content of 8.0% and 9.5% deforms continuously even after experiencing almost ten freeze-thaw cycles. Overall, this study provides a simple nonlinear finite element approach for calculating the deformation of the embankment in changing climate conditions. 展开更多
关键词 deformation nonlinear finite element analysis freeze-thaw cycles embankment heavy-haul railway
下载PDF
A full-scale field experiment to study the thermal-deformation process of widening highway embankments in permafrost regions
8
作者 ShuangJie Wang Long Jin +3 位作者 Kun Yuan DongGen Chen JinPing Li Yi Song 《Research in Cold and Arid Regions》 CSCD 2021年第2期123-132,共10页
As one of the widely used upgrading way in road engineering, the widening embankment(WE) has suffered evident differential deformation, which is even severer for highway in permafrost regions due to the temperature se... As one of the widely used upgrading way in road engineering, the widening embankment(WE) has suffered evident differential deformation, which is even severer for highway in permafrost regions due to the temperature sensitivity of frozen soil and the heat absorption effect of the asphalt pavement. Given this issue, a full-scale experimental highway of WE was performed along the Qinghai-Tibet Highway(QTH) to investigate the differential deformation features and its developing law. The continuous three years' monitoring data taken from the experimental site, including the ground temperature and the layered deformation of WE and original embankment(OE), were used to analyze the thermal-deformation process. The results indicate that the widening part presented the remarkable thermal disturbance to the existing embankment(EE). The underlying permafrost was in a noteworthy degradation state, embodying the apparent decrease of the permafrost table and the increase of the ground temperature. Correspondingly, the heat disruption induced by widening led to a much higher deformation at the widening side compared to the original embankment, showing a periodic stepwise curve. Specifically, the deformation mainly occurred in the junction of the EE and the widening part, most of which was caused by the thawing consolidation near the original permafrost table. In contrast, the deformation of EE mainly attributed to the compression of the active layer. Furthermore, it was the deformation origination differences that resulted in the differential deformation of WE developed gradually during the monitoring period, the maximum of which reached up to 64 mm. 展开更多
关键词 widening embankment PERMAFROST deformation in-situ experiment
下载PDF
Embankment deformation analyzed by elastoplastic damage model coupling consolidation theory
9
作者 Hong SUN Xihong ZHAO 《Global Geology》 2006年第2期156-160,共5页
The deformation, of embankment has serious influences on neighboring structure and infrastructure. A trial embankment is reanalyzed by elastoplastic damage model coupling Blot' s consolidation theory. With the increa... The deformation, of embankment has serious influences on neighboring structure and infrastructure. A trial embankment is reanalyzed by elastoplastic damage model coupling Blot' s consolidation theory. With the increase in time of loading, the damage accumulation becomes larger. Under the centre and toe of embankment, damage becomes serious. Under the centre of embankment, vertical damage values are bigger than horizontal ones. Under the toe of embankment, horizontal damage values are bigger than vertical ones. 展开更多
关键词 embankment deformation consolidation theory elastoplastic damage model
下载PDF
Roadbed, embankment, tower support and culvert stability problems on permafrost 被引量:1
10
作者 V.G.Kondratiev 《Research in Cold and Arid Regions》 CSCD 2013年第4期377-386,共10页
The history of railway and highway construction in permafrost zones in Russia, the United States, Canada, and China spans more than 110 years. Nonetheless, no railway track or highway has yet been built in such area t... The history of railway and highway construction in permafrost zones in Russia, the United States, Canada, and China spans more than 110 years. Nonetheless, no railway track or highway has yet been built in such area that is impervious to deformation caused by subsidence resulting from the thawing of ice-rich subgrade soils. This paper presents data on the roadbed states of the Trans- baikalian and the Baikal-Amur Railways as well as the Russian "AMUR" Chita-Khabarovsk Highway. It also discusses the feasi- bility of roadbed stability maintenance using methods based on the reduction of the mean annual ground temperature and roadbed preservation in a permafrost state by means of the natural cooling and heating factors ratio regulation resulting in a reduction of the heat generation in the roadbed and the adjoining area accompanied by an increase of heat consumption with help of the sun-precipitation protective sheds (awnings), rock covers, dolomite powder (reflective paint), cooling tube and thermosyphons as well as tower supports and corrugated pipe culverts stability. 展开更多
关键词 Baikal-Amur Railroad Transbaikalian Railroad Highway "AMUR" Chita-Khabarovsk PERMAFROST embankment roadbed deformation stabilizing treatment measures
下载PDF
Delta River Swampy Areas Earth Fill Embankments Primary Consolidation Management Issues 被引量:1
11
作者 Ampeglio Diego Garini 《Journal of Civil Engineering and Architecture》 2021年第7期370-373,共4页
It is well known that soft silty clayey and even peaty soils especially existing in Great River Deltas Swampy Areas,under important Earth Fill Embankment Construction experience huge and hardly bearable primary consol... It is well known that soft silty clayey and even peaty soils especially existing in Great River Deltas Swampy Areas,under important Earth Fill Embankment Construction experience huge and hardly bearable primary consolidations settlements along with the minor but not negligible consequent secondary consolidation effects.In order to properly manage these particular huge settlements environments,it is very important to follow up the settlements monitoring data,by a macroscopic soil volume interpretation along with some amendments namely some mathematical added variabilities of the classic Terzaghi Primary Consolidation Equation,which are examined in a companion paper recently published in this Journal.In this paper some indications are given about how to face the macroscopic soil volume primary consolidation settlements,and especially it is suggested how to interpret the misleading laboratory consolidation test values of the coefficient of consolidation.Moreover,some design alternative solutions are examined to grasp both the potential technical and economic benefits along with their consequent disadvantages.Finally,this paper underlined the primary role of the supervision engineer to get a good estimate in the settlements forecasting and his related ability to understand the meaning of anomalous monitoring data and to timely make and match the primary consolidation settlements forecasting calculation adjustments. 展开更多
关键词 Coefficient of consolidation embankment construction management primary consolidation soil permeability SETTLEMENTS vertical settlements void ratio
下载PDF
Numerical analysis of pile lateral behavior of pile supported embankment
12
作者 荆志东 刘力 +1 位作者 郑刚 姜岩 《Journal of Central South University》 SCIE EI CAS 2008年第S2期87-92,共6页
A finite difference numerical method was adopted to evaluate the pile lateral behavior of pile supported embankment. A published case history was used to verify the proposed methodology. By simulating the case history... A finite difference numerical method was adopted to evaluate the pile lateral behavior of pile supported embankment. A published case history was used to verify the proposed methodology. By simulating the case history, the determination of parameters needed were verified. Then three embankments constructed on different ground conditions with different soil-pile relative stiffnesses were analyzed to study pile lateral behaviors including pile deflection and bending moment. The results show that pile deflections and bending moments induced by soil lateral deformation and embankment vertical load are different for piles at different positions under the same embankment. The relative stiffness between pile and soil affected by the properties of different reinforcing piles such as concrete pile and deep mixing method pile exert important effects on the pile lateral behavior and the pile's failure modes. Consequently, it is necessary to consider the different piles lateral behaviors and possible failure modes at different positions and the different piles proprieties with different reinforcing methods in the embankment stability analysis. 展开更多
关键词 PILE SUPPORTED embankment stability ANALYSIS LATERAL soil deformation soil-pile interaction three-dimensional ANALYSIS
下载PDF
Discussion on Construction Technology and Welding Deformation of High-Rise Steel Frame Structure
13
作者 Sijin He Xinzhong Leng 《Journal of World Architecture》 2023年第5期23-28,共6页
Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction indu... Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction industry.However,the construction of high-rise steel frame structures requires advanced technology.If the construction technology is effectively implemented and the welding techniques of the construction personnel align with the requirements for high-rise steel frame structures,it can help mitigate deformations in the steel structure,thus preserving the overall construction quality of high-rise steel frame structures.To enhance the applicability of steel frame structures in high-rise buildings,this paper focuses on analyzing the optimization path for the construction process of high-rise steel frame structures.It introduces a tailored approach to control welding-induced deformations in steel frame structures,aiming to make a valuable contribution to the advancement of China’s construction industry. 展开更多
关键词 High-rise steel frame structure construction technology Welding deformation Structural stability
下载PDF
Deformation,structure and potential hazard of a landslide based on InSAR in Banbar county,Xizang(Tibet)
14
作者 Guan-hua Zhao Heng-xing Lan +4 位作者 Hui-yong Yin Lang-ping Li Alexander Strom Wei-feng Sun Chao-yang Tian 《China Geology》 CAS CSCD 2024年第2期203-221,共19页
The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan P... The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan Plateau region,leading to a rising risk of landslides.The landslide in Banbar County,Xizang(Tibet),have been perturbed by ongoing disturbances from human engineering activities,making it susceptible to instability and displaying distinct features.In this study,small baseline subset synthetic aperture radar interferometry(SBAS-InSAR)technology is used to obtain the Line of Sight(LOS)deformation velocity field in the study area,and then the slope-orientation deformation field of the landslide is obtained according to the spatial geometric relationship between the satellite’s LOS direction and the landslide.Subsequently,the landslide thickness is inverted by applying the mass conservation criterion.The results show that the movement area of the landslide is about 6.57×10^(4)m^(2),and the landslide volume is about 1.45×10^(6)m^(3).The maximum estimated thickness and average thickness of the landslide are 39 m and 22 m,respectively.The thickness estimation results align with the findings from on-site investigation,indicating the applicability of this method to large-scale earth slides.The deformation rate of the landslide exhibits a notable correlation with temperature variations,with rainfall playing a supportive role in the deformation process and displaying a certain lag.Human activities exert the most substantial influence on the spatial heterogeneity of landslide deformation,leading to the direct impact of several prominent deformation areas due to human interventions.Simultaneously,utilizing the long short-term memory(LSTM)model to predict landslide displacement,and the forecast results demonstrate the effectiveness of the LSTM model in predicting landslides that are in a continuous development and movement phase.The landslide is still active,and based on the spatial heterogeneity of landslide deformation,new recommendations have been proposed for the future management of the landslide in order to mitigate potential hazards associated with landslide instability. 展开更多
关键词 LANDSLIDE INSAR Human activity deformation STRUCTURE LSTM model Engineering construction Thickness Neural network Machine learning Prediction and prevention Tibetan Plateau Geological hazards survey engineering
下载PDF
Permanent deformation and prediction model of construction and demolition waste under repeated loading 被引量:7
15
作者 HUANG Chao ZHANG Jun-hui +2 位作者 ZHANG An-shun LI Jue WANG Xin-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1363-1375,共13页
This study aims to reveal the macroscopic permanent deformation(PD)behavior and the internal structural evolution of construction and demolition waste(CDW)under loading.Firstly,the initial matric suction of CDW was me... This study aims to reveal the macroscopic permanent deformation(PD)behavior and the internal structural evolution of construction and demolition waste(CDW)under loading.Firstly,the initial matric suction of CDW was measured by the filter paper method.Secondly,the PD of CDW with different humidity and stress states was investigated by repeated load triaxial tests,and a comprehensive prediction model was established.Finally,the discrete element method was performed to analyze the internal structural evolution of CDW during deformation.These results showed that the VAN-GENUCHTEN model could describe the soil-water characteristic curve of CDW well.The PD increases with the increase of the deviator stress and the number of cyclic loading,but the opposite trend was observed when the initial matric suction and confining pressure increased.The proposed model in this study provides a satisfactory prediction of PD.The discrete element method could accurately simulate the macroscopic PD of CDW,and the shear force,interlock force and sliding content increase with the increase of deviator stress during the deformation.The research could provide useful reference for the deformation stability analysis of CDW under cyclic loading. 展开更多
关键词 construction and demolition waste subgrade filler permanent deformation discrete element method prediction model
下载PDF
A construction strategy for a tunnel with big deformation 被引量:2
16
作者 Liang Chen Shougen Chen Xinrong Tan 《Journal of Modern Transportation》 2013年第2期86-94,共9页
By integrating literature reviews, site observa- tion, field monitoring, theoretical analysis, summarization, etc., a construction strategy was proposed and verified for tunneling with big deformation in this paper. T... By integrating literature reviews, site observa- tion, field monitoring, theoretical analysis, summarization, etc., a construction strategy was proposed and verified for tunneling with big deformation in this paper. The tunnel was in phyllite, shotcrete cracks and steel arch distortion were observed, and a big deformation with a maximum of 2.0 m was monitored during the initial stage of the construction. Through carefully examining the site observation and laboratory test results, a construction principle was established for the tunneling on the basic concept of maintaining the rock strength/stiffness and keeping the rock dry, by providing confinement pressure to the rock, reducing the rock exposure time, keeping water out of the tunnel, etc. To achieve the construction principle, a set of specific construction measures with 11 items was further proposed and applied to the construction. To check the effectiveness of the construction measures, field monitoring was carried out, which showed that the rock deformation was well controlled and the tunnel became stable. An allowable deformation was then determined using the Fenner formulae and the monitored data in order to guide further construction, which received a good result. From this study, it can be concluded that providing quick strong initial support and reserving core soil at the working faceare extremely important to control the rock deformation and keep the tunnel stable. 展开更多
关键词 Tunnel engineering Big deformation construction strategy
下载PDF
Analytic model of deformation of construction interfaces of rolled control concrete dam
17
作者 顾冲时 黄光明 赖道平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第1期79-86,共8页
The construction interfaces of RCCD have a distinct influence on the deformation of dams. The characters and rules on deformation of construction interfaces are studied. The methods simulating the deformation of the i... The construction interfaces of RCCD have a distinct influence on the deformation of dams. The characters and rules on deformation of construction interfaces are studied. The methods simulating the deformation of the interfaces at different stages are proposed. A thickness analytic model and a no-thickness analytic model of construction interfaces are built. These models can reflect the elastic deformation, the attenuation creep deformation, the irreversible creep deformation and the accelerating creep defor- mation of interfaces. The example shows that these proposed models can simulate the deformation of the dam structure objectively. Especially, the results of the thickness analytic model which simulates the gradual changing regularities of interfaces can tally with those of monitoring in situ preferably. The methods proposed and the analytic models can be generalized and applied to general concrete dams, especially to the analysis on deformation rules of fault and interlayer in dam base. 展开更多
关键词 RCCD construction interface deformation analytic model
下载PDF
Dynamic Deformation Monitoring for Long-Span Bridges under Construction and EMD De-noising Method
18
作者 Shengxiang Huang Chao Kang Wen Zhang 《Journal of Civil Engineering and Architecture》 2016年第7期853-859,共7页
Construction progress of long-span bridge is complicated and the quality control is strict. Any disadvantage during construction may potentially affect the internal forces and deck alignments after it is open to traff... Construction progress of long-span bridge is complicated and the quality control is strict. Any disadvantage during construction may potentially affect the internal forces and deck alignments after it is open to traffic. To exactly evaluate the periodic alignments, internal forces and safety, geometrical and physical monitoring are needed during construction. This study aims at the requirement of dynamic geometric monitoring during Sutong Bridge construction, and introduces the realization and observing schemes of the self-developed GPS real-time dynamic geometrical deformation monitoring system. Affected by wind load and construction circumstance, GPS (global positioning system) monitoring signal contains a variety of noise. And the useful signal can be extracted from the signal after de-noising the noises. A de-noising method based on EMD (empirical mode decomposition) model is introduced here to process the bridge dynamic monitoring data, and with the wavelet threshold de-noising method are compared. The result shows that the EMD method has good adaptability, is free from the choice of wavelet bases and the number of decomposition layer. The method is an effective de-noising method for dynamic deformation monitoring to large-span bridges. 展开更多
关键词 Long-span bridge construction period dynamic deformation monitoring empirical mode decomposition de-noising.
下载PDF
Research on Deformation Control Indicators and Standard of Urban Traffic Tunnel Construction Adjacent to High-rise Building
19
作者 Bo Shi Kun Wang Ke Li 《Journal of Architectural Research and Development》 2020年第6期24-30,共7页
The biggest environmental problem caused by the construction of tunnels adjacent to high-rise buildings is the settlement of buildings.The paper analyzes the influence of tunnel excavation on the deformation of the su... The biggest environmental problem caused by the construction of tunnels adjacent to high-rise buildings is the settlement of buildings.The paper analyzes the influence of tunnel excavation on the deformation of the superstructure and the deformation mode of the superstructure.It introduces the indicators and standards for the construction control of tunnel adjacent to the building at home and abroad.Combined with the Yuzhong tunnel project under construction in Chongqing,the main monitoring indicators and control standards of the Yuzhong Tunnel passing through the main buildings are given after comprehensive analysis and considerations,which provide a reference for the deformation control indicators of similar urban traffic tunnels adjacent to high-rise buildings. 展开更多
关键词 deformation Control Indicators Urban Traffic Tunnel construction High-rise Building
下载PDF
Wireless remote spatiotemporal monitoring of high-fill foundation deformation
20
作者 YANG Xiao-hui LI Zhi-qian +1 位作者 ZHU Yan-peng GUO Nan 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1620-1638,共19页
The spatial and temporal deformation patterns and deformation control indicators of highfill foundations directly affect the design,construction and operational safety of high-fill projects.In situ monitoring can comp... The spatial and temporal deformation patterns and deformation control indicators of highfill foundations directly affect the design,construction and operational safety of high-fill projects.In situ monitoring can comprehensively reflect the deformation of high-fill during and after construction.In this paper,we have first designed and installed an integrated wireless remote monitoring system for high-fill to achieve real-time dynamic monitoring of settlement,pore water pressure and soil pressure of the fill foundation.Based on the monitoring results of nearly one year of the construction period and two years after construction,it was found that the deformation amount and deformation rate of the high-fill foundation showed a non-linear growth relationship with the filling rate and filling height.The settlement deformation of the high-fill foundation during the loading period was mainly dominated by the original foundation soil,accounting for 54.4%of the total settlement on average;the settlement deformation during the post-construction period was mainly dominated by the filling body,accounting for 77.04%of the total settlement on average,and the settlement deformation during the post-construction period mainly occurred in the first year after construction.The analysis of the deformation mechanism suggests that the deformation of the filling body is dominated by exhaust consolidation during the loading period and drainage consolidation during the post-construction period;the deformation of the original foundation soil is dominated by drainage consolidation during the loading period and drainage consolidation develops slowly during the post-construction period.It is recommended that the original foundation should be reinforced before the large area filling construction,and that the filling rate should be strictly controlled during construction.The research results can provide a scientific basis for deformation calculation and stability assessment of high-fill foundations. 展开更多
关键词 High-fill engineering Wireless remote monitoring Foundation deformation Spatiotemporal law Settlement after construction
下载PDF
上一页 1 2 163 下一页 到第
使用帮助 返回顶部