Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which...Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which attracts more and more attention from the academic and industry communities.In this paper,the main features of casting technology were briefly summarized and forecasted,and the recent developments of key technologies and the innovative efforts made in promoting intelligent casting process were discussed.Moreover,the technical visions of intelligent casting process were also put forward.The key technologies for intelligent casting process comprise 3D printing technologies,intelligent mold technologies and intelligent process control technologies.In future,the intelligent mold that derived from mold with sensors,control devices and actuators will probably incorporate the Internet of Things,online inspection,embedded simulation,decision-making and control system,and other technologies to form intelligent cyber-physical casting system,which may pave the way to realize intelligent casting.It is promising that the intelligent casting process will eventually achieve the goal of real-time process optimization and full-scale control,with the defects,microstructure,performance,and service life of the fabricated castings can be accurately predicted and tailored.展开更多
Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to en...Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.展开更多
A multichannel remote control system for imelligent community based on the STC89C54 chip was designed with the technique of embedded Web server. The control system can monitor 255 signals and eight control signals of ...A multichannel remote control system for imelligent community based on the STC89C54 chip was designed with the technique of embedded Web server. The control system can monitor 255 signals and eight control signals of one node at the same time, and can be connected to the internet by the TCP/IP protocol. So the field control information can be shown dynamically in a remote computer by way of web pages. The system has high convenience and friendly monitoring interface, then especially is fit for the large conamunity and storage that need multipoint monitoring and frequent switching door.展开更多
Water-lubrication bearings are critical components in ship operation.However,studies on their maintenance and failure detection are highly limited.The use of sensors to continually monitor the working operation of bea...Water-lubrication bearings are critical components in ship operation.However,studies on their maintenance and failure detection are highly limited.The use of sensors to continually monitor the working operation of bearings is a potential approach to solve this problem,which is collectively called intelligent bearings.In this literature review,the recent progress of electrical resistance strain gauges,Fiber Bragg grating,triboelectric nanogenerators,piezoelectric nanogenerators,and thermoelectric sensors for in-situ monitoring is summarized.Future research and design concepts on intelligent water-lubrication bearings are also comprehensively discussed.The findings show that the accident risks,lubrication condition,and remaining life of water-lubricated bearings can be evaluated with the surface temperature,coefficient of friction,and wear volume monitoring.The research work on intelligent water-lubricated bearings is committed to promoting the development of green,electrified,and intelligent technologies for ship propulsion systems,which have important theoretical significance and application value.展开更多
Based on the well logging knowledge graph of hydrocarbon-bearing formation(HBF),a Knowledge-Powered Neural Network Formation Evaluation model(KPNFE)has been proposed.It has the following functions:(1)extracting charac...Based on the well logging knowledge graph of hydrocarbon-bearing formation(HBF),a Knowledge-Powered Neural Network Formation Evaluation model(KPNFE)has been proposed.It has the following functions:(1)extracting characteristic parameters describing HBF in multiple dimensions and multiple scales;(2)showing the characteristic parameter-related entities,relationships,and attributes as vectors via graph embedding technique;(3)intelligently identifying HBF;(4)seamlessly integrating expertise into the intelligent computing to establish the assessment system and ranking algorithm for potential pay recommendation.Taking 547 wells encountered the low porosity and low permeability Chang 6 Member of Triassic in the Jiyuan Block of Ordos Basin,NW China as objects,80%of the wells were randomly selected as the training dataset and the remainder as the validation dataset.The KPNFE prediction results on the validation dataset had a coincidence rate of 94.43%with the expert interpretation results and a coincidence rate of 84.38%for all the oil testing layers,which is 13 percentage points higher in accuracy and over 100 times faster than the primary conventional interpretation.In addition,a number of potential pays likely to produce industrial oil were recommended.The KPNFE model effectively inherits,carries forward and improves the expert knowledge,nicely solving the robustness problem in HBF identification.The KPNFE,with good interpretability and high accuracy of computation results,is a powerful technical means for efficient and high-quality well logging re-evaluation of old wells in mature oilfields.展开更多
The protrusion of the planning of numerical intelligent early-warning and tracking system in this study which can ease triggerman's work strength,lay the next generation intelligence supervision system foundation ...The protrusion of the planning of numerical intelligent early-warning and tracking system in this study which can ease triggerman's work strength,lay the next generation intelligence supervision system foundation and expand effectively the video resources use etc. In the numerical intelligent early-warning matrix sub-system,the authors have designed a kind dual-core system which includes both ARM and DSP,and designed detailedly traffic dynamics affairs early-warning arithmetic which bases on that system. And then,this system will carry quickly on fixing the right position of license plate,correcting the inclination degree of license plate,and thinning it to get the number of this license and severity grade. Secondly,in the rotated dome camera sub-system,the authors have designed three-dimensional trajectory mathematical model which makes use of a fuzzy PID controller to achieve the high- speed track. At last,Simulation shows that the proposed control method has high profile tracking precision,accuracy and robustness of the disturbance.展开更多
Intelligent equipment is a kind of device that is characterized by intelligent sensor interconnections, big data processing, new types of displays, human-machine interaction and so on for the new generation of informa...Intelligent equipment is a kind of device that is characterized by intelligent sensor interconnections, big data processing, new types of displays, human-machine interaction and so on for the new generation of information technology. For this purpose, in this paper, first, we present a type of novel intelligent deep hybrid neural network algorithm based on a deep bidirectional recurrent neural network integrated with a deep backward propagation neural network. It has realized acoustic analysis, speech recognition and natural language understanding for jointly constituting human-machine voice interactions. Second, we design a voice control motherboard using an embedded chip from the ARM series as the core, and the onboard components include ZigBee, RFID, WIFI, GPRS, a RS232 serial port, USB interfaces and so on. Third, we take advantage of algorithms, software and hardware to make machines “understand” human speech and “think” and “comprehend” human intentions to structure critical components for intelligent vehicles, intelligent offices, intelligent service robots, intelligent industries and so on, which furthers the structure of the intelligent ecology of the Internet of Things. At last, the experimental results denote that the study of the semantics interaction controls based on an embedding has a very good effect, fast speed and high accuracy, consequently realizing the intelligent ecology construction of the Internet of Things.展开更多
In order to realize intelligent control of flower greenhouse' s parameters of atmospheric temperature and humidity, lighting intensity, CO2 concentration and soil water content, it carries out design with ZigBee netw...In order to realize intelligent control of flower greenhouse' s parameters of atmospheric temperature and humidity, lighting intensity, CO2 concentration and soil water content, it carries out design with ZigBee network, embedded controller and intelligent fuzzy control algorithm as core. With advantages of high precision and stability, the design of sensor circuit mainly employs digital module sensors. In order to save energy, the sensor circuit is controlled by relay switch to work at the proper time. The gateway node is designed by employing high performance 32-digit embedded controller and WinCE6.0 embedded OS is self customized. And embedded SQlite database is realized on WinCE6.0 for effectively managing data. The closed loop control is realized by employing fuzzy control algorithm and the test result shows that the deviation of atmospheric temperature is controlled within ± 0.5° C, the deviation of illumination intensity is controlled within ± 283 LUX, the deviation of CO2 concentration is controlled within ± 24 PPM, the deviation of atmospheric humidity is controlled within ± 13% and that of soil water content is controlled within ± 0.9%, thus all parameters fully meet practical requirements of flower greenhouse.展开更多
基金funded by the Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund(L212002)the Tsinghua-Toyota Joint Research Fund(20223930096)the Guangdong Provincial Key Area Research and Development Program(2022B0909070001).
文摘Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which attracts more and more attention from the academic and industry communities.In this paper,the main features of casting technology were briefly summarized and forecasted,and the recent developments of key technologies and the innovative efforts made in promoting intelligent casting process were discussed.Moreover,the technical visions of intelligent casting process were also put forward.The key technologies for intelligent casting process comprise 3D printing technologies,intelligent mold technologies and intelligent process control technologies.In future,the intelligent mold that derived from mold with sensors,control devices and actuators will probably incorporate the Internet of Things,online inspection,embedded simulation,decision-making and control system,and other technologies to form intelligent cyber-physical casting system,which may pave the way to realize intelligent casting.It is promising that the intelligent casting process will eventually achieve the goal of real-time process optimization and full-scale control,with the defects,microstructure,performance,and service life of the fabricated castings can be accurately predicted and tailored.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2021B0909060002)National Natural Science Foundation of China(Grant Nos.62204219,62204140)+1 种基金Major Program of Natural Science Foundation of Zhejiang Province(Grant No.LDT23F0401)Thanks to Professor Zhang Yishu from Zhejiang University,Professor Gao Xu from Soochow University,and Professor Zhong Shuai from Guangdong Institute of Intelligence Science and Technology for their support。
文摘Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.
文摘A multichannel remote control system for imelligent community based on the STC89C54 chip was designed with the technique of embedded Web server. The control system can monitor 255 signals and eight control signals of one node at the same time, and can be connected to the internet by the TCP/IP protocol. So the field control information can be shown dynamically in a remote computer by way of web pages. The system has high convenience and friendly monitoring interface, then especially is fit for the large conamunity and storage that need multipoint monitoring and frequent switching door.
基金Supported by the National Natural Science Foundation of China(Grant No.52171319).
文摘Water-lubrication bearings are critical components in ship operation.However,studies on their maintenance and failure detection are highly limited.The use of sensors to continually monitor the working operation of bearings is a potential approach to solve this problem,which is collectively called intelligent bearings.In this literature review,the recent progress of electrical resistance strain gauges,Fiber Bragg grating,triboelectric nanogenerators,piezoelectric nanogenerators,and thermoelectric sensors for in-situ monitoring is summarized.Future research and design concepts on intelligent water-lubrication bearings are also comprehensively discussed.The findings show that the accident risks,lubrication condition,and remaining life of water-lubricated bearings can be evaluated with the surface temperature,coefficient of friction,and wear volume monitoring.The research work on intelligent water-lubricated bearings is committed to promoting the development of green,electrified,and intelligent technologies for ship propulsion systems,which have important theoretical significance and application value.
基金Supported by the National Science and Technology Major Project(2016ZX05007-004)。
文摘Based on the well logging knowledge graph of hydrocarbon-bearing formation(HBF),a Knowledge-Powered Neural Network Formation Evaluation model(KPNFE)has been proposed.It has the following functions:(1)extracting characteristic parameters describing HBF in multiple dimensions and multiple scales;(2)showing the characteristic parameter-related entities,relationships,and attributes as vectors via graph embedding technique;(3)intelligently identifying HBF;(4)seamlessly integrating expertise into the intelligent computing to establish the assessment system and ranking algorithm for potential pay recommendation.Taking 547 wells encountered the low porosity and low permeability Chang 6 Member of Triassic in the Jiyuan Block of Ordos Basin,NW China as objects,80%of the wells were randomly selected as the training dataset and the remainder as the validation dataset.The KPNFE prediction results on the validation dataset had a coincidence rate of 94.43%with the expert interpretation results and a coincidence rate of 84.38%for all the oil testing layers,which is 13 percentage points higher in accuracy and over 100 times faster than the primary conventional interpretation.In addition,a number of potential pays likely to produce industrial oil were recommended.The KPNFE model effectively inherits,carries forward and improves the expert knowledge,nicely solving the robustness problem in HBF identification.The KPNFE,with good interpretability and high accuracy of computation results,is a powerful technical means for efficient and high-quality well logging re-evaluation of old wells in mature oilfields.
基金Supported by the National Basic Research Program of China(No.2011CB707000)Science and Technology Development Program of Shandong Province(No.J13LC51,2011XH17006)Independent Innovation Program of Ji’nan Colleges and Universities(No.201401213)
文摘The protrusion of the planning of numerical intelligent early-warning and tracking system in this study which can ease triggerman's work strength,lay the next generation intelligence supervision system foundation and expand effectively the video resources use etc. In the numerical intelligent early-warning matrix sub-system,the authors have designed a kind dual-core system which includes both ARM and DSP,and designed detailedly traffic dynamics affairs early-warning arithmetic which bases on that system. And then,this system will carry quickly on fixing the right position of license plate,correcting the inclination degree of license plate,and thinning it to get the number of this license and severity grade. Secondly,in the rotated dome camera sub-system,the authors have designed three-dimensional trajectory mathematical model which makes use of a fuzzy PID controller to achieve the high- speed track. At last,Simulation shows that the proposed control method has high profile tracking precision,accuracy and robustness of the disturbance.
文摘Intelligent equipment is a kind of device that is characterized by intelligent sensor interconnections, big data processing, new types of displays, human-machine interaction and so on for the new generation of information technology. For this purpose, in this paper, first, we present a type of novel intelligent deep hybrid neural network algorithm based on a deep bidirectional recurrent neural network integrated with a deep backward propagation neural network. It has realized acoustic analysis, speech recognition and natural language understanding for jointly constituting human-machine voice interactions. Second, we design a voice control motherboard using an embedded chip from the ARM series as the core, and the onboard components include ZigBee, RFID, WIFI, GPRS, a RS232 serial port, USB interfaces and so on. Third, we take advantage of algorithms, software and hardware to make machines “understand” human speech and “think” and “comprehend” human intentions to structure critical components for intelligent vehicles, intelligent offices, intelligent service robots, intelligent industries and so on, which furthers the structure of the intelligent ecology of the Internet of Things. At last, the experimental results denote that the study of the semantics interaction controls based on an embedding has a very good effect, fast speed and high accuracy, consequently realizing the intelligent ecology construction of the Internet of Things.
文摘In order to realize intelligent control of flower greenhouse' s parameters of atmospheric temperature and humidity, lighting intensity, CO2 concentration and soil water content, it carries out design with ZigBee network, embedded controller and intelligent fuzzy control algorithm as core. With advantages of high precision and stability, the design of sensor circuit mainly employs digital module sensors. In order to save energy, the sensor circuit is controlled by relay switch to work at the proper time. The gateway node is designed by employing high performance 32-digit embedded controller and WinCE6.0 embedded OS is self customized. And embedded SQlite database is realized on WinCE6.0 for effectively managing data. The closed loop control is realized by employing fuzzy control algorithm and the test result shows that the deviation of atmospheric temperature is controlled within ± 0.5° C, the deviation of illumination intensity is controlled within ± 283 LUX, the deviation of CO2 concentration is controlled within ± 24 PPM, the deviation of atmospheric humidity is controlled within ± 13% and that of soil water content is controlled within ± 0.9%, thus all parameters fully meet practical requirements of flower greenhouse.