Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,...Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.展开更多
How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle co...How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids.展开更多
Information steganography has received more and more attention from scholars nowadays,especially in the area of image steganography,which uses image content to transmit information and makes the existence of secret in...Information steganography has received more and more attention from scholars nowadays,especially in the area of image steganography,which uses image content to transmit information and makes the existence of secret information undetectable.To enhance concealment and security,the Steganography without Embedding(SWE)method has proven effective in avoiding image distortion resulting from cover modification.In this paper,a novel encrypted communication scheme for image SWE is proposed.It reconstructs the image into a multi-linked list structure consisting of numerous nodes,where each pixel is transformed into a single node with data and pointer domains.By employing a special addressing algorithm,the optimal linked list corresponding to the secret information can be identified.The receiver can restore the secretmessage fromthe received image using only the list header position information.The scheme is based on the concept of coverless steganography,eliminating the need for any modifications to the cover image.It boasts high concealment and security,along with a complete message restoration rate,making it resistant to steganalysis.Furthermore,this paper proposes linked-list construction schemeswithin theproposedframework,which caneffectively resist a variety of attacks,includingnoise attacks and image compression,demonstrating a certain degree of robustness.To validate the proposed framework,practical tests and comparisons are conducted using multiple datasets.The results affirm the framework’s commendable performance in terms of message reduction rate,hidden writing capacity,and robustness against diverse attacks.展开更多
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete...A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.展开更多
Identification of underlying partial differential equations(PDEs)for complex systems remains a formidable challenge.In the present study,a robust PDE identification method is proposed,demonstrating the ability to extr...Identification of underlying partial differential equations(PDEs)for complex systems remains a formidable challenge.In the present study,a robust PDE identification method is proposed,demonstrating the ability to extract accurate governing equations under noisy conditions without prior knowledge.Specifically,the proposed method combines gene expression programming,one type of evolutionary algorithm capable of generating unseen terms based solely on basic operators and functional terms,with symbolic regression neural networks.These networks are designed to represent explicit functional expressions and optimize them with data gradients.In particular,the specifically designed neural networks can be easily transformed to physical constraints for the training data,embedding the discovered PDEs to further optimize the metadata used for iterative PDE identification.The proposed method has been tested in four canonical PDE cases,validating its effectiveness without preliminary information and confirming its suitability for practical applications across various noise levels.展开更多
To solve the low efficiency of approximate queries caused by the large sizes of the knowledge graphs in the real world,an embedding-based approximate query method is proposed.First,the nodes in the query graph are cla...To solve the low efficiency of approximate queries caused by the large sizes of the knowledge graphs in the real world,an embedding-based approximate query method is proposed.First,the nodes in the query graph are classified according to the degrees of approximation required for different types of nodes.This classification transforms the query problem into three constraints,from which approximate information is extracted.Second,candidates are generated by calculating the similarity between embeddings.Finally,a deep neural network model is designed,incorporating a loss function based on the high-dimensional ellipsoidal diffusion distance.This model identifies the distance between nodes using their embeddings and constructs a score function.k nodes are returned as the query results.The results show that the proposed method can return both exact results and approximate matching results.On datasets DBLP(DataBase systems and Logic Programming)and FUA-S(Flight USA Airports-Sparse),this method exhibits superior performance in terms of precision and recall,returning results in 0.10 and 0.03 s,respectively.This indicates greater efficiency compared to PathSim and other comparative methods.展开更多
Objective:To elucidate the biological basis of the heart qi deficiency(HQD)pattern,an in-depth understanding of which is essential for improving clinical herbal therapy.Methods: We predicted and characterized HQD patt...Objective:To elucidate the biological basis of the heart qi deficiency(HQD)pattern,an in-depth understanding of which is essential for improving clinical herbal therapy.Methods: We predicted and characterized HQD pattern genes using the new strategy,TCM-HIN2Vec,which involves heterogeneous network embedding and transcriptomic experiments.First,a heterogeneous network of traditional Chinese medicine(TCM)patterns was constructed using public databases.Next,we predicted HQD pattern genes using a heterogeneous network-embedding algorithm.We then analyzed the functional characteristics of HQD pattern genes using gene enrichment analysis and examined gene expression levels using RNA-seq.Finally,we identified TCM herbs that demonstrated enriched interactions with HQD pattern genes via herbal enrichment analysis.Results: Our TCM-HIN2Vec strategy revealed that candidate genes associated with HQD pattern were significantly enriched in energy metabolism,signal transduction pathways,and immune processes.Moreover,we found that these candidate genes were significantly differentially expressed in the transcriptional profile of mice model with heart failure with a qi deficiency pattern.Furthermore,herbal enrichment analysis identified TCM herbs that demonstrated enriched interactions with the top 10 candidate genes and could potentially serve as drug candidates for treating HQD.Conclusion: Our results suggested that TCM-HIN2Vec is capable of not only accurately identifying HQD pattern genes,but also deciphering the basis of HQD pattern.Furthermore our finding indicated that TCM-HIN2Vec may be further expanded to develop other patterns,leading to a new approach aimed at elucidating general TCM patterns and developing precision medicine.展开更多
In the tobacco industry,insider employee attack is a thorny problem that is difficult to detect.To solve this issue,this paper proposes an insider threat detection method based on heterogeneous graph embedding.First,t...In the tobacco industry,insider employee attack is a thorny problem that is difficult to detect.To solve this issue,this paper proposes an insider threat detection method based on heterogeneous graph embedding.First,the interrelationships between logs are fully considered,and log entries are converted into heterogeneous graphs based on these relationships.Second,the heterogeneous graph embedding is adopted and each log entry is represented as a low-dimensional feature vector.Then,normal logs and malicious logs are classified into different clusters by clustering algorithm to identify malicious logs.Finally,the effectiveness and superiority of the method is verified through experiments on the CERT dataset.The experimental results show that this method has better performance compared to some baseline methods.展开更多
Extracting building contours from aerial images is a fundamental task in remote sensing.Current building extraction methods cannot accurately extract building contour information and have errors in extracting small-sc...Extracting building contours from aerial images is a fundamental task in remote sensing.Current building extraction methods cannot accurately extract building contour information and have errors in extracting small-scale buildings.This paper introduces a novel dense feature iterative(DFI)fusion network,denoted as DFINet,for extracting building contours.The network uses a DFI decoder to fuse semantic information at different scales and learns the building contour knowledge,producing the last features through iterative fusion.The dense feature fusion(DFF)module combines features at multiple scales.We employ the contour reconstruction(CR)module to access the final predictions.Extensive experiments validate the effectiveness of the DFINet on two different remote sensing datasets,INRIA aerial image dataset and Wuhan University(WHU)building dataset.On the INRIA aerial image dataset,our method achieves the highest intersection over union(IoU),overall accuracy(OA)and F 1 scores compared to other state-of-the-art methods.展开更多
Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is desi...Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is designed,and a multiimage encryption(MIE)algorithm with row and column confusion and closed-loop bi-directional diffusion is adopted in the paper.While ensuring secure communication of medical image information,people with different security levels have different levels of decryption keys,and differentiated visual effects can be obtained by using the strong sensitivity of chaotic keys.The highest security level can obtain decrypted images without watermarks,and at the same time,patient information and copyright attribution can be verified by obtaining watermark images.The experimental results show that the scheme is sufficiently secure as an MIE scheme with visualized differences and the encryption and decryption efficiency is significantly improved compared to other works.展开更多
This paper discusses the feasibility of thin-shell wormholes in spacetimes of embedding class one admitting a one-parameter group of conformal motions. It is shown that the surface energy density σis positive, while ...This paper discusses the feasibility of thin-shell wormholes in spacetimes of embedding class one admitting a one-parameter group of conformal motions. It is shown that the surface energy density σis positive, while the surface pressure is negative, resulting in , thereby signaling a violation of the null energy condition, a necessary condition for holding a wormhole open. For a Morris-Thorne wormhole, matter that violates the null energy condition is referred to as “exotic”. For the thin-shell wormholes in this paper, however, the violation has a physical explanation since it is a direct consequence of the embedding theory in conjunction with the assumption of conformal symmetry. These properties avoid the need to hypothesize the existence of the highly problematical exotic matter.展开更多
Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are...Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are usually toxic and may cause water pollution.In this work,Ag NPs(31.2 nm in diameter)were prepared using the extract of straw,an agricultural waste,as the reducing and stabilizing agent.Experimental analysis revealed that the straw extract contained lignin,the structure of which possesses phenolic hydroxyl and methoxy groups that facilitate the reduction of silver salts into Ag NPs.The surfaces of Ag NPs were negatively charged due to the encapsulation of a thin layer of lignin molecules that prevented their aggregation.After the prepared Ag NPs were added to the precursor solution of acrylamide,free radical polymerization was triggered without the need for extra heating or light irradiation,resulting in the rapid formation of an Ag NP-polyacrylamide composite hydrogel.The inhibition zone test proved that the composite hydrogel possessed excellent antibacterial ability due to the presence of Ag NPs.The prepared hydrogel may have potential applications in the fabrication of biomedical materials,such as antibacterial dressings.展开更多
.Abstracting eye models from MRI images is critical in advancing medical imaging, particularly for clinical diagnostics. Current methods often struggle with accuracy and efficiency, highlighting a gap this research ai....Abstracting eye models from MRI images is critical in advancing medical imaging, particularly for clinical diagnostics. Current methods often struggle with accuracy and efficiency, highlighting a gap this research aims to fill. This study investigates the application of machine learning methods, focusing on the U-net-based deep learning framework, to improve the accuracy of eye model extraction. The objectives include fitting measured eye data to models such as the Ellipsoid model, evaluating automated segmentation tools, and assessing the usability of machine learning-based extractions in clinical scenarios. We employed point cloud data of 202,872 points to fit eye models using ellipsoid, non-linear, and spherical fitting techniques. The fitting processes were optimized to ensure precision and reliability. We compared the performance of these models using mean squared error (MSE) as the primary metric. The non-linear model emerged as the most accurate, with a significantly lower MSE (1.186562) compared to the ellipsoid (781.0542) and spherical models. This finding indicates that the non-linear model provides a more detailed and precise representation of the eye’s geometry. These results suggest that machine learning methods, particularly non-linear models, can significantly enhance the accuracy and usability of eye model extraction in clinical diagnostics, offering a robust framework for future advancements in medical imaging.展开更多
Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigat...Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigates the influence of different extraction methods(room temperature water extraction,boiling water extraction,ultrasonic-assisted room temperature water extraction,and ultrasonic-assisted boiling water extraction,referred to as room temperature water extraction(RE),boiling water extraction(BE),ultrasonic assistance at room temperature water extraction(URE),and ultrasonic assistance in boiling water extraction(UBE))on the yield,dihydromyricetin(DMY)content,free amino acid composition,volatile aroma components,and antioxidant properties of vine tea extracts.Results:A notable influence of extraction temperature on the yield of vine tea extracts(P<0.05),with BE yielding the highest at 43.13±0.26%,higher than that of RE(34.29±0.81%).Ultrasound-assisted extraction significantly increased the DMY content of the extracts(P<0.05),whereas DMY content in the RE extracts was 59.94±1.70%,that of URE reached 66.14±2.78%.Analysis revealed 17 amino acids,with L-serine and aspartic acid being the most abundant in the extracts,nevertheless ultrasound-assisted extraction reduced total free amino acid content.Gas chromatography-mass spectrometry analysis demonstrated an increase in the diversity and quantity of compounds in the vine tea water extracts obtained through ultrasonic-assisted extraction.Specifically,69 and 68 volatile compounds were found in URE and UBE extracts,which were higher than the number found in RE and BE extracts.In vitro,antioxidant activity assessments revealed varying antioxidant capacities among different extraction methods,with RE exhibiting the highest DPPH scavenging rate,URE leading in ABTS•+free radical scavenging,and BE demonstrating superior ferric ion reducing antioxidant activity.Conclusion:The findings suggest that extraction methods significantly influence the chemical composition and antioxidant properties of vine tea extracts.Ultrasonic-assisted extraction proved instrumental in elevating the DMY content in vine tea extracts,thereby enriching its flavor profile while maintaining its antioxidant properties.展开更多
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions...With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.展开更多
Nowadays,we can use the multi-task learning approach to train a machine-learning algorithm to learn multiple related tasks instead of training it to solve a single task.In this work,we propose an algorithm for estimat...Nowadays,we can use the multi-task learning approach to train a machine-learning algorithm to learn multiple related tasks instead of training it to solve a single task.In this work,we propose an algorithm for estimating textual similarity scores and then use these scores in multiple tasks such as text ranking,essay grading,and question answering systems.We used several vectorization schemes to represent the Arabic texts in the SemEval2017-task3-subtask-D dataset.The used schemes include lexical-based similarity features,frequency-based features,and pre-trained model-based features.Also,we used contextual-based embedding models such as Arabic Bidirectional Encoder Representations from Transformers(AraBERT).We used the AraBERT model in two different variants.First,as a feature extractor in addition to the text vectorization schemes’features.We fed those features to various regression models to make a prediction value that represents the relevancy score between Arabic text units.Second,AraBERT is adopted as a pre-trained model,and its parameters are fine-tuned to estimate the relevancy scores between Arabic textual sentences.To evaluate the research results,we conducted several experiments to compare the use of the AraBERT model in its two variants.In terms of Mean Absolute Percentage Error(MAPE),the results showminor variance between AraBERT v0.2 as a feature extractor(21.7723)and the fine-tuned AraBERT v2(21.8211).On the other hand,AraBERT v0.2-Large as a feature extractor outperforms the finetuned AraBERT v2 model on the used data set in terms of the coefficient of determination(R2)values(0.014050,−0.032861),respectively.展开更多
AIM:To evaluate the effect of femtosecond laser small incision lenticule extraction(SMILE)on the binocular visual function in myopic patients with glasses-free threedimensional(3D)technique.METHODS:Totally 50 myopic p...AIM:To evaluate the effect of femtosecond laser small incision lenticule extraction(SMILE)on the binocular visual function in myopic patients with glasses-free threedimensional(3D)technique.METHODS:Totally 50 myopic patients(39 females and 11 males)with SMILE were enrolled in this prospective study.The glasses-free 3D technique was used to evaluate the binocular visual function in these subjects including static stereopsis,dynamic stereopsis,foveal suppression,and binocular balance point of signal to noise ratio(s/n ratio).All subjects received measurements in 1d before operation,and 1d,1wk,and 1mo postoperatively.RESULTS:Both static and dynamic stereopsis showed no significant difference after SMILE.The foveal suppression improved significantly 1wk and 1mo after SMILE(P=0.005 and P=0.007 respectively).The binocular balance point of signal to noise ratio showed a significant improvement 1d,1wk and 1mo after SMILE for both eyes(P<0.001 for each eye respectively).CONCLUSION:Glasses-free 3D technique can be used to evaluate the effect of SMILE on the binocular visual function in myopic patients perceptively,and SMILE can improve both foveal suppression and binocular imbalance in these patients.展开更多
文摘Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.
基金National Key Science & Technology Special Projects(Grant No.2008ZX05000-004)CNPC Projects(Grant No.2008E-0610-10).
文摘How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids.
基金Acknowledgements: This work is supported partly by the National Natural Science Foundation of China (No. 40174032) and the Special Scientific Research Project (No. 04JK251) of the Education Bureau of Shaanxi Province.
基金supported in part by the National Natural Science Foundation of China(Nos.62372083,62072074,62076054,62027827,62002047)the Sichuan Science and Technology Innovation Platform and Talent Plan(No.2022JDJQ0039)+2 种基金the Sichuan Science and Technology Support Plan(Nos.2024NSFTD0005,2022YFQ0045,2022YFS0220,2023YFS0020,2023YFS0197,2023YFG0148)the CCF-Baidu Open Fund(No.202312)the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China(Nos.ZYGX2021YGLH212,ZYGX2022YGRH012).
文摘Information steganography has received more and more attention from scholars nowadays,especially in the area of image steganography,which uses image content to transmit information and makes the existence of secret information undetectable.To enhance concealment and security,the Steganography without Embedding(SWE)method has proven effective in avoiding image distortion resulting from cover modification.In this paper,a novel encrypted communication scheme for image SWE is proposed.It reconstructs the image into a multi-linked list structure consisting of numerous nodes,where each pixel is transformed into a single node with data and pointer domains.By employing a special addressing algorithm,the optimal linked list corresponding to the secret information can be identified.The receiver can restore the secretmessage fromthe received image using only the list header position information.The scheme is based on the concept of coverless steganography,eliminating the need for any modifications to the cover image.It boasts high concealment and security,along with a complete message restoration rate,making it resistant to steganalysis.Furthermore,this paper proposes linked-list construction schemeswithin theproposedframework,which caneffectively resist a variety of attacks,includingnoise attacks and image compression,demonstrating a certain degree of robustness.To validate the proposed framework,practical tests and comparisons are conducted using multiple datasets.The results affirm the framework’s commendable performance in terms of message reduction rate,hidden writing capacity,and robustness against diverse attacks.
基金supported by the Key Area R&D Program of Guangdong Province (Grant No.2022B0701180001)the National Natural Science Foundation of China (Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China (Grant Nos.2019B010140002 and 2020B111110002)the Guangdong-Hong Kong-Macao Joint Innovation Field Project (Grant No.2021A0505080006)。
文摘A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.
基金supported by the National Natural Science Foundation of China(Grant Nos.92152102 and 92152202)the Advanced Jet Propulsion Innovation Center/AEAC(Grant No.HKCX2022-01-010)。
文摘Identification of underlying partial differential equations(PDEs)for complex systems remains a formidable challenge.In the present study,a robust PDE identification method is proposed,demonstrating the ability to extract accurate governing equations under noisy conditions without prior knowledge.Specifically,the proposed method combines gene expression programming,one type of evolutionary algorithm capable of generating unseen terms based solely on basic operators and functional terms,with symbolic regression neural networks.These networks are designed to represent explicit functional expressions and optimize them with data gradients.In particular,the specifically designed neural networks can be easily transformed to physical constraints for the training data,embedding the discovered PDEs to further optimize the metadata used for iterative PDE identification.The proposed method has been tested in four canonical PDE cases,validating its effectiveness without preliminary information and confirming its suitability for practical applications across various noise levels.
基金The State Grid Technology Project(No.5108202340042A-1-1-ZN).
文摘To solve the low efficiency of approximate queries caused by the large sizes of the knowledge graphs in the real world,an embedding-based approximate query method is proposed.First,the nodes in the query graph are classified according to the degrees of approximation required for different types of nodes.This classification transforms the query problem into three constraints,from which approximate information is extracted.Second,candidates are generated by calculating the similarity between embeddings.Finally,a deep neural network model is designed,incorporating a loss function based on the high-dimensional ellipsoidal diffusion distance.This model identifies the distance between nodes using their embeddings and constructs a score function.k nodes are returned as the query results.The results show that the proposed method can return both exact results and approximate matching results.On datasets DBLP(DataBase systems and Logic Programming)and FUA-S(Flight USA Airports-Sparse),this method exhibits superior performance in terms of precision and recall,returning results in 0.10 and 0.03 s,respectively.This indicates greater efficiency compared to PathSim and other comparative methods.
基金supported by the National Natural Science Foundation of China(32088101)National key Research and Development Program of China(2017YFC1700105,2021YFA1301603).
文摘Objective:To elucidate the biological basis of the heart qi deficiency(HQD)pattern,an in-depth understanding of which is essential for improving clinical herbal therapy.Methods: We predicted and characterized HQD pattern genes using the new strategy,TCM-HIN2Vec,which involves heterogeneous network embedding and transcriptomic experiments.First,a heterogeneous network of traditional Chinese medicine(TCM)patterns was constructed using public databases.Next,we predicted HQD pattern genes using a heterogeneous network-embedding algorithm.We then analyzed the functional characteristics of HQD pattern genes using gene enrichment analysis and examined gene expression levels using RNA-seq.Finally,we identified TCM herbs that demonstrated enriched interactions with HQD pattern genes via herbal enrichment analysis.Results: Our TCM-HIN2Vec strategy revealed that candidate genes associated with HQD pattern were significantly enriched in energy metabolism,signal transduction pathways,and immune processes.Moreover,we found that these candidate genes were significantly differentially expressed in the transcriptional profile of mice model with heart failure with a qi deficiency pattern.Furthermore,herbal enrichment analysis identified TCM herbs that demonstrated enriched interactions with the top 10 candidate genes and could potentially serve as drug candidates for treating HQD.Conclusion: Our results suggested that TCM-HIN2Vec is capable of not only accurately identifying HQD pattern genes,but also deciphering the basis of HQD pattern.Furthermore our finding indicated that TCM-HIN2Vec may be further expanded to develop other patterns,leading to a new approach aimed at elucidating general TCM patterns and developing precision medicine.
基金Supported by the National Natural Science Foundation of China(No.62203390)the Science and Technology Project of China TobaccoZhejiang Industrial Co.,Ltd(No.ZJZY2022E004)。
文摘In the tobacco industry,insider employee attack is a thorny problem that is difficult to detect.To solve this issue,this paper proposes an insider threat detection method based on heterogeneous graph embedding.First,the interrelationships between logs are fully considered,and log entries are converted into heterogeneous graphs based on these relationships.Second,the heterogeneous graph embedding is adopted and each log entry is represented as a low-dimensional feature vector.Then,normal logs and malicious logs are classified into different clusters by clustering algorithm to identify malicious logs.Finally,the effectiveness and superiority of the method is verified through experiments on the CERT dataset.The experimental results show that this method has better performance compared to some baseline methods.
基金National Natural Science Foundation of China(No.61903078)Fundamental Research Funds for the Central Universities,China(No.2232021A-10)+1 种基金Shanghai Sailing Program,China(No.22YF1401300)Natural Science Foundation of Shanghai,China(No.20ZR1400400)。
文摘Extracting building contours from aerial images is a fundamental task in remote sensing.Current building extraction methods cannot accurately extract building contour information and have errors in extracting small-scale buildings.This paper introduces a novel dense feature iterative(DFI)fusion network,denoted as DFINet,for extracting building contours.The network uses a DFI decoder to fuse semantic information at different scales and learns the building contour knowledge,producing the last features through iterative fusion.The dense feature fusion(DFF)module combines features at multiple scales.We employ the contour reconstruction(CR)module to access the final predictions.Extensive experiments validate the effectiveness of the DFINet on two different remote sensing datasets,INRIA aerial image dataset and Wuhan University(WHU)building dataset.On the INRIA aerial image dataset,our method achieves the highest intersection over union(IoU),overall accuracy(OA)and F 1 scores compared to other state-of-the-art methods.
基金Project supported by the National Natural Science Foundation of China(Grant No.62061014)the Natural Science Foundation of Liaoning province of China(Grant No.2020-MS-274).
文摘Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is designed,and a multiimage encryption(MIE)algorithm with row and column confusion and closed-loop bi-directional diffusion is adopted in the paper.While ensuring secure communication of medical image information,people with different security levels have different levels of decryption keys,and differentiated visual effects can be obtained by using the strong sensitivity of chaotic keys.The highest security level can obtain decrypted images without watermarks,and at the same time,patient information and copyright attribution can be verified by obtaining watermark images.The experimental results show that the scheme is sufficiently secure as an MIE scheme with visualized differences and the encryption and decryption efficiency is significantly improved compared to other works.
文摘This paper discusses the feasibility of thin-shell wormholes in spacetimes of embedding class one admitting a one-parameter group of conformal motions. It is shown that the surface energy density σis positive, while the surface pressure is negative, resulting in , thereby signaling a violation of the null energy condition, a necessary condition for holding a wormhole open. For a Morris-Thorne wormhole, matter that violates the null energy condition is referred to as “exotic”. For the thin-shell wormholes in this paper, however, the violation has a physical explanation since it is a direct consequence of the embedding theory in conjunction with the assumption of conformal symmetry. These properties avoid the need to hypothesize the existence of the highly problematical exotic matter.
基金financially supported by the National Natural Science Foundation of China(No.52203209)the State Key Laboratory of Solid Waste Reuse for Building Materials,China(No.SWR-2022-009)the Fundamental Research Funds for the Central Universities,China(No.FRF-IDRY22-012)。
文摘Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are usually toxic and may cause water pollution.In this work,Ag NPs(31.2 nm in diameter)were prepared using the extract of straw,an agricultural waste,as the reducing and stabilizing agent.Experimental analysis revealed that the straw extract contained lignin,the structure of which possesses phenolic hydroxyl and methoxy groups that facilitate the reduction of silver salts into Ag NPs.The surfaces of Ag NPs were negatively charged due to the encapsulation of a thin layer of lignin molecules that prevented their aggregation.After the prepared Ag NPs were added to the precursor solution of acrylamide,free radical polymerization was triggered without the need for extra heating or light irradiation,resulting in the rapid formation of an Ag NP-polyacrylamide composite hydrogel.The inhibition zone test proved that the composite hydrogel possessed excellent antibacterial ability due to the presence of Ag NPs.The prepared hydrogel may have potential applications in the fabrication of biomedical materials,such as antibacterial dressings.
文摘.Abstracting eye models from MRI images is critical in advancing medical imaging, particularly for clinical diagnostics. Current methods often struggle with accuracy and efficiency, highlighting a gap this research aims to fill. This study investigates the application of machine learning methods, focusing on the U-net-based deep learning framework, to improve the accuracy of eye model extraction. The objectives include fitting measured eye data to models such as the Ellipsoid model, evaluating automated segmentation tools, and assessing the usability of machine learning-based extractions in clinical scenarios. We employed point cloud data of 202,872 points to fit eye models using ellipsoid, non-linear, and spherical fitting techniques. The fitting processes were optimized to ensure precision and reliability. We compared the performance of these models using mean squared error (MSE) as the primary metric. The non-linear model emerged as the most accurate, with a significantly lower MSE (1.186562) compared to the ellipsoid (781.0542) and spherical models. This finding indicates that the non-linear model provides a more detailed and precise representation of the eye’s geometry. These results suggest that machine learning methods, particularly non-linear models, can significantly enhance the accuracy and usability of eye model extraction in clinical diagnostics, offering a robust framework for future advancements in medical imaging.
基金supported by the Key Research and Development Program of Hunan Province of China(No.2022NK2036)Xiangxi Prefecture Science and Technology Plan Project"School-Local Integration"Special Project(No.2022001)the scientific research project of Hunan Provincial Department of Education(No.22B0520).
文摘Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigates the influence of different extraction methods(room temperature water extraction,boiling water extraction,ultrasonic-assisted room temperature water extraction,and ultrasonic-assisted boiling water extraction,referred to as room temperature water extraction(RE),boiling water extraction(BE),ultrasonic assistance at room temperature water extraction(URE),and ultrasonic assistance in boiling water extraction(UBE))on the yield,dihydromyricetin(DMY)content,free amino acid composition,volatile aroma components,and antioxidant properties of vine tea extracts.Results:A notable influence of extraction temperature on the yield of vine tea extracts(P<0.05),with BE yielding the highest at 43.13±0.26%,higher than that of RE(34.29±0.81%).Ultrasound-assisted extraction significantly increased the DMY content of the extracts(P<0.05),whereas DMY content in the RE extracts was 59.94±1.70%,that of URE reached 66.14±2.78%.Analysis revealed 17 amino acids,with L-serine and aspartic acid being the most abundant in the extracts,nevertheless ultrasound-assisted extraction reduced total free amino acid content.Gas chromatography-mass spectrometry analysis demonstrated an increase in the diversity and quantity of compounds in the vine tea water extracts obtained through ultrasonic-assisted extraction.Specifically,69 and 68 volatile compounds were found in URE and UBE extracts,which were higher than the number found in RE and BE extracts.In vitro,antioxidant activity assessments revealed varying antioxidant capacities among different extraction methods,with RE exhibiting the highest DPPH scavenging rate,URE leading in ABTS•+free radical scavenging,and BE demonstrating superior ferric ion reducing antioxidant activity.Conclusion:The findings suggest that extraction methods significantly influence the chemical composition and antioxidant properties of vine tea extracts.Ultrasonic-assisted extraction proved instrumental in elevating the DMY content in vine tea extracts,thereby enriching its flavor profile while maintaining its antioxidant properties.
文摘With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.
文摘Nowadays,we can use the multi-task learning approach to train a machine-learning algorithm to learn multiple related tasks instead of training it to solve a single task.In this work,we propose an algorithm for estimating textual similarity scores and then use these scores in multiple tasks such as text ranking,essay grading,and question answering systems.We used several vectorization schemes to represent the Arabic texts in the SemEval2017-task3-subtask-D dataset.The used schemes include lexical-based similarity features,frequency-based features,and pre-trained model-based features.Also,we used contextual-based embedding models such as Arabic Bidirectional Encoder Representations from Transformers(AraBERT).We used the AraBERT model in two different variants.First,as a feature extractor in addition to the text vectorization schemes’features.We fed those features to various regression models to make a prediction value that represents the relevancy score between Arabic text units.Second,AraBERT is adopted as a pre-trained model,and its parameters are fine-tuned to estimate the relevancy scores between Arabic textual sentences.To evaluate the research results,we conducted several experiments to compare the use of the AraBERT model in its two variants.In terms of Mean Absolute Percentage Error(MAPE),the results showminor variance between AraBERT v0.2 as a feature extractor(21.7723)and the fine-tuned AraBERT v2(21.8211).On the other hand,AraBERT v0.2-Large as a feature extractor outperforms the finetuned AraBERT v2 model on the used data set in terms of the coefficient of determination(R2)values(0.014050,−0.032861),respectively.
基金Supported by Sichuan Science and Technology Program(No.23NSFSC0856).
文摘AIM:To evaluate the effect of femtosecond laser small incision lenticule extraction(SMILE)on the binocular visual function in myopic patients with glasses-free threedimensional(3D)technique.METHODS:Totally 50 myopic patients(39 females and 11 males)with SMILE were enrolled in this prospective study.The glasses-free 3D technique was used to evaluate the binocular visual function in these subjects including static stereopsis,dynamic stereopsis,foveal suppression,and binocular balance point of signal to noise ratio(s/n ratio).All subjects received measurements in 1d before operation,and 1d,1wk,and 1mo postoperatively.RESULTS:Both static and dynamic stereopsis showed no significant difference after SMILE.The foveal suppression improved significantly 1wk and 1mo after SMILE(P=0.005 and P=0.007 respectively).The binocular balance point of signal to noise ratio showed a significant improvement 1d,1wk and 1mo after SMILE for both eyes(P<0.001 for each eye respectively).CONCLUSION:Glasses-free 3D technique can be used to evaluate the effect of SMILE on the binocular visual function in myopic patients perceptively,and SMILE can improve both foveal suppression and binocular imbalance in these patients.