Objective:To evaluate the effect of glutathione(GSH)supplementation in maturation and adaptation media on oocyte development,embryo quality,and oocyte viability after vitrification.Methods:The GSH concentrations were ...Objective:To evaluate the effect of glutathione(GSH)supplementation in maturation and adaptation media on oocyte development,embryo quality,and oocyte viability after vitrification.Methods:The GSH concentrations were classified into four groups(0,0.5,1.0,and 1.5 mM)which were added to the maturation medium.The maturation process was conducted in vitro for 24 h.Following maturation,oocytes were fertilized with Bali bull semen for 5-6 h and then cultured for 48 h.The morphological quality of ocytes matured with GSH addition and the vitrification method used was evaluated.Parameters assessed included maturation rate,fertilization rate,embryo development,post-vitrification oocyte morphology,and quality of post-vitrification oocytes with GSH added to the adaptation medium.Results:The addition of GSH to the maturation medium significantly improved oocyte quality and embryo development(P<0.05).Specifically,adding 1.5 mM GSH increased the percentage of oocytes reaching metaphase栻from 57.6%without GSH oocytes to 79.0%with 1.5 mM GSH,two-pronuclei fertilization from 47.0%to 72.7%,embryo development from 37.1%to 57.2%,morula formation from 14.6%to 33.7%,and blastocyst formation from 8.1%to 23.8%.Additionally,the survival rate of oocytes post-vitrification increased to 75%with GSH supplementation.Conclusions:The addition of 0.5-1.5 mM of GSH to the maturation and adaptation media significantly enhanced the metaphase栻stage,fertilization rates,cleavage rates,and the survival of oocytes after vitrification.Among the concentrations of 1.5 mM was the most effective in increasing oocyte development and maintaining oocytes viability post-vitrification.展开更多
Unlike other major crops,little research has been performed on tomato to reduce the generation time for speed breeding.We evaluated several agronomic treatments to reduce the generation time of tomato in the‘M82'...Unlike other major crops,little research has been performed on tomato to reduce the generation time for speed breeding.We evaluated several agronomic treatments to reduce the generation time of tomato in the‘M82'(determinate)and‘Moneymaker'(indeterminate)varieties and evaluated the best combination in conjunction with embryo rescue.Five container sizes with volumes of 0.2 L(XS),0.45 L(S),0.8 L(M),1.3 L(L),and6 L(XL),were evaluated in the first experiment under the autumn cycle.We found that plants grown in XL containers exhibited better development and required less time from sowing to anthesis(DSA)and from anthesis to fruit ripening(DAR).In the second experiment,using XL containers in the autumn-winter cycle,we evaluated the effects of cold priming at the cotyledonary stage,water stress,P supplementation,and K supplementation on generation time.Compared to the control,we found that cold priming significantly reduced the number of leaves,plant height to first the inflorescence,and DSA(2.7 d),whereas K supplementation reduced the DAR(8.8 d).In contrast,water stress and P supplementation did not significantly affect any of the measured traits like DAR,DSA or fruit set.To validate these data,in a third experiment with XL containers in the spring-summer cycle,the combination of cold priming and K supplementation was tested,confirming the significant effect of this combination on the reduction of generation time(2.9 d for DSA and 3.9 d for DAR)compared to the control.Embryo rescue during the cell expansion cycle(average of 22.0 d and 23.3 d after anthesis for‘M82'and‘Moneymaker',respectively)allowed the shortening of the generation time by 8.7 d in‘M82'and 11.6 d in‘Moneymaker'compared to the in planta fruit ripening.The combination of agronomic treatments with embryo rescue can effectively increase the number of generations per year from three to four for speed breeding of tomato.展开更多
Objective Both sequential embryo transfer(SeET)and double-blastocyst transfer(DBT)can serve as embryo transfer strategies for women with recurrent implantation failure(RIF).This study aims to compare the effects of Se...Objective Both sequential embryo transfer(SeET)and double-blastocyst transfer(DBT)can serve as embryo transfer strategies for women with recurrent implantation failure(RIF).This study aims to compare the effects of SeET and DBT on pregnancy outcomes.Methods Totally,261 frozen-thawed embryo transfer cycles of 243 RIF women were included in this multicenter retrospective analysis.According to different embryo quality and transfer strategies,they were divided into four groups:group A,good-quality SeET(GQ-SeET,n=38 cycles);group B,poor-quality or mixed-quality SeET(PQ/MQ-SeET,n=31 cycles);group C,good-quality DBT(GQ-DBT,n=121 cycles);and group D,poor-quality or mixed-quality DBT(PQ/MQ-DBT,n=71 cycles).The main outcome,clinical pregnancy rate,was compared,and the generalized estimating equation(GEE)model was used to correct potential confounders that might impact pregnancy outcomes.Results GQ-DBT achieved a significantly higher clinical pregnancy rate(aOR 2.588,95%CI 1.267–5.284,P=0.009)and live birth rate(aOR 3.082,95%CI 1.482–6.412,P=0.003)than PQ/MQ-DBT.Similarly,the clinical pregnancy rate was significantly higher in GQ-SeET than in PQ/MQ-SeET(aOR 4.047,95%CI 1.218–13.450,P=0.023).The pregnancy outcomes of GQ-SeET were not significantly different from those of GQ-DBT,and the same results were found between PQ/MQ-SeET and PQ/MQ-DBT.Conclusion SeET relative to DBT did not seem to improve pregnancy outcomes for RIF patients if the embryo quality was comparable between the two groups.Better clinical pregnancy outcomes could be obtained by transferring good-quality embryos,no matter whether in SeET or DBT.Embryo quality plays a more important role in pregnancy outcomes for RIF patients.展开更多
Objective:To determine the relationship between the early embryo viability assessment(EEVA)and blastocyst morphological parameters and pregnancy outcomes.Methods:This retrospective cohort study was conducted on 291 in...Objective:To determine the relationship between the early embryo viability assessment(EEVA)and blastocyst morphological parameters and pregnancy outcomes.Methods:This retrospective cohort study was conducted on 291 intracytoplasmic sperm injection cycles including 2522 embryos with indications of prolonging embryo culture to the blastocyst stage in the Genea embryo review incubator,and 511 single vitrified-warmed blastocyst transfer cycles from January 2020 to June 2023.The EEVA system produced an EEVA score from E1(best)to E5(worse)for the potential of blastocyst formation.Blastocyst morphology was evaluated.The association between the EEVA score and each type of blastocyst morphology,implantation rate,clinical pregnancy,and ongoing pregnancy were assessed using generalized estimating equations.Results:The inner cell mass A(ICM A),trophectoderm A(TE A),blastocoele expansion degree of 3,4,5,6,7 rates were higher with lower the EEVA score.The adjusted odd ratio(aOR)(E5 vs E1)was 0.3 for ICM A,0.174 for TE A and 0.210 for BL3,4,5,6,7(all P<0.001),suggesting a significant association between lower EEVA scores and improved embryo quality.The implantation,clinical pregnancy,and ongoing pregnancy rate were also higher with lower the EEVA score.The aOR of E5 vs E1 was 0.245 for implantation,0.185 for clinical pregnancy and 0.200 for ongoing pregnancy rate(P<0.001).Conclusions:There were associations between blastocyst morphology,pregnancy outcome and EEVA scores.The good blastocyst morphology and pregnancy outcomes are higher with lower the EEVA score.展开更多
The endochondral ossification of hindlimb is essential to a bird’s ability to stand,walk and fly.Most hindlimb is ossified in the embryos before hatching in precocial birds.However,the molecular mechanisms of hindlim...The endochondral ossification of hindlimb is essential to a bird’s ability to stand,walk and fly.Most hindlimb is ossified in the embryos before hatching in precocial birds.However,the molecular mechanisms of hindlimb ossification in birds is still unclear.Therefore,we tried to examine the process of hindlimb ossification and its molecular regulation by using an animal model—Japanese Quail(Coturnix japonica).We selected four critical stages(Embryo Day:E6,E8,E12 and E16) of skeletal development of embryonic quails for hindlimb skeleton staining to show the process of endochondral ossification and to examine the molecular regulation of endochondral osteogenesis by RNA-Seq analysis.The results showed that ossification became increased with embryonic development and most hindlimb was ossified before hatching.RNA-Seq analysis revealed that various signaling pathways were involved with endochondral ossification with thyroid hormone signaling and WNT signaling pathway particularly enriched.Moreover,the expression levels of 42 genes were continuously upregulated and 14 genes were continuously downregulated from E6 to E16.The present study might provide new insights into complex molecular mechanisms in regulation of endochondral ossification.展开更多
Due to high environmental temperatures and climate change, heat stress is a severe concern for poultry health and production, increasing the propensity for food insecurity. With climate change causing higher temperatu...Due to high environmental temperatures and climate change, heat stress is a severe concern for poultry health and production, increasing the propensity for food insecurity. With climate change causing higher temperatures and erratic weather patterns in recent years, poultry are increasingly vulnerable to this environmental stressor. To mitigate heat stress, nutritional, genetic, and managerial strategies have been implemented with some success. However, these strategies did not adequately and sustainably reduce the heat stress. Therefore, it is crucial to take proactive measures to mitigate the effects of heat stress on poultry, ensuring optimal production and promoting poultry well-being. Embryonic thermal manipulation(TM) involves manipulating the embryonic environment's temperature to enhance broilers' thermotolerance and growth performance. One of the most significant benefits of this approach is its cost-effectiveness and saving time associated with traditional management practices. Given its numerous advantages, embryonic TM is a promising strategy for enhancing broiler production and profitability in the poultry industry. TM increases the standard incubation temperature in the mid or late embryonic stage to induce epigenetic thermal adaption and embryonic metabolism. Therefore, this review aims to summarize the available literature and scientific evidence of the beneficial effect of pre-hatch thermal manipulation on broiler health and performance.展开更多
Transfer RNA-derived small RNAs(tsRNAs)have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells.However,it is unknown whether tsRNAs also regulate...Transfer RNA-derived small RNAs(tsRNAs)have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells.However,it is unknown whether tsRNAs also regulate embryo hatching.In this study,we mined the sequencing data of a previous experiment in which we demonstrated that the microRNA(miRNA)cargo of preimplantation embryonic extracellular vesicles(EVs)influences embryo development.We thus profiled the tsRNA cargo of EVs secreted by blastocysts and non-blastocysts.The majority of tsRNAs was identified as tRNA halves originating from the 5'ends of tRNAs.Among the 148 differentially expressed tsRNAs,the 19 nt tRNA fragment(tRF)tDR-14:32-Glu-CTC-1 was found to be significantly up-regulated in EVs derived from non-blastocysts.RT-qPCR assays confirmed its significant up-regulation in non-blastocyst embryos and their conditioned medium compared to the blastocyst group(P<0.05).Inhibition of tDR-14:32-Glu-CTC-1 by supplementing antagomirs to the conditioned medium improved embryo hatching(P<0.05).Transcriptomic analysis of embryos treated with tDR-14:32-Glu-CTC-1 antagomirs further showed differential expression of genes that are associated with embryo hatching and implantation.In summary,tDR-14:32-Glu-CTC-1 is up-regulated in non-blastocyst embryos and their secretions,and inhibition of tDR-14:32-Glu-CTC-1 promotes embryo hatching,while influencing embryo implantation-related genes and pathways.These results indicate that embryonic EVs containing specific tRFs may regulate preimplantation embryo development.展开更多
The thermal-elastic martensitic transformation from high-temperature Ni_(2)In-type hexagonal structure to low-temperature TiNiSi-type orthorhombic structure has been widely studied in MnMX(M=Ni or Co,and X=Ge or Si)al...The thermal-elastic martensitic transformation from high-temperature Ni_(2)In-type hexagonal structure to low-temperature TiNiSi-type orthorhombic structure has been widely studied in MnMX(M=Ni or Co,and X=Ge or Si)alloys.However,the answer to how the orthorhombic martensite nucleates and grows within the hexagonal parent is still unclear.In this work,the hexagonal-orthorhombic martensitic transformation in a Co and Ge co-substituted MnNiSi is investigated.One can find some orthorhombic laths embedded in the hexagonal parent at a temperature above the martensitic transformation start temperature(M_(s)).With the the sample cooing to M_(s),the laths turn broader,indicating that the martensitic transformation starts from these pre-existing orthorhombic laths.Microstructure observation suggests that these pre-existing orthorhombic laths do not originate from the hexagonal-orthorhombic martensitic transformation because of the difference between atomic occupations of doping elements in the hexagonal parent and those in the preexisting orthorhombic laths.The phenomenological crystallographic theory and experimental investigations prove that the pre-existing orthorhombic lath and generated orthorhombic martensite have the same crystallography relationship to the hexagonal parent.Therefore,the orthorhombic martensite can take these pre-existing laths as embryos and grow up.This work implies that the martensitic transformation in MnNiSi_(1-x)(CoNiGe)_(x) alloy is initiated by orthorhombic embryos.展开更多
Objective:To investigate the effects of coenzyme Q10(CoQ10)supplementation on post-vitrification embryo development and gross morphology.Methods:Balb/c mouse embryos were cultured in potassium simplex optimised medium...Objective:To investigate the effects of coenzyme Q10(CoQ10)supplementation on post-vitrification embryo development and gross morphology.Methods:Balb/c mouse embryos were cultured in potassium simplex optimised medium(KSOM)with varying CoQ10 concentrations[0(control),20,40,and 60μM].The most effective CoQ10 concentration(40μM)was selected for subsequent post-vitrification morphology study.Embryos were randomly divided into four groups:Group A(non-vitrified without CoQ10),Group B(non-vitrified with CoQ10),Group C(vitrified without CoQ10),and Group D(vitrified with CoQ10),followed by vitrification at the 8-cell stage.Survival rates and development until the blastocyst stage were evaluated through morphological examinations using ASEBIR's system,distinguishing normal and abnormal embryos.Results:Supplementation of 40μM CoQ10 significantly increased blastocyst formation(95%)compared to the control group(92%),20μM(62%),and 60μM(56%)(P<0.001).Following vitrification,Group D exhibited a significant increase in blastocyst formation(92%)compared to Group C(82%)(P<0.05).Morphological assessments indicated superior embryo quality in Group B over Group D during the cleavage stage,morula,and blastocyst(P<0.05).Conclusions:CoQ10 supplementation exhibits promising potential to enhance preimplantation embryo development,increase blastocyst formation rates,and improve embryo quality post-vitrification.This offers a promising approach to mitigate oxidative stress on embryos,potentially improving overall assisted reproductive technology outcomes.展开更多
Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.There...Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.Thereis thus a pressing need to develop an organogenesis protocol for in vitro propagation of T.amurensis to alleviate ashortage of high-quality T.amurensis seedlings.Here,we established a rapid in vitro propagation system forT.amurensis from mature zygotic embryos and analyzed the effects of plant growth regulators and culture mediain different stages.We found that Woody plant medium(WPM)was the optimal primary culture medium formature zygotic embryos.The highest callus induction percentage(68.76%)and number of axillary buds induced(3.2)were obtained in WPM+0.89μmol/L 6-benzyladenine(6-BA)+0.46μmol/L kinetin(KT)+0.25μmol/Lindole-3-butryic acid(IBA)+1.44μmol/L gibberellin A_(3)(GA_(3)).The multiple shoot bud development achievedthe highest percentage(83.32%)in the Murashige and Skoog(MS)+2.22μmol/L 6-BA+0.25μmol/L IBA+1.44μmol/L GA_(3).The rooting percentage(96.70%)was highest in 1/2 MS medium+1.48μmol/L IBA.Thesurvival percentage of transplanting plantlets was 82.22%in soil:vermiculite:perlite(5:3:1).Our study is the firstto establish an effective organogenesis protocol for T.amurensis using mature zygotic embryos.展开更多
Background Oxidative stress,caused by an imbalance in the production and elimination of intracellular reactive oxygen species(ROS),has been recognized for its detrimental effects on mammalian embryonic development.Lut...Background Oxidative stress,caused by an imbalance in the production and elimination of intracellular reactive oxygen species(ROS),has been recognized for its detrimental effects on mammalian embryonic development.Luteolin(Lut)has been documented for its protective effects against oxidative stress in various studies.However,its specific role in embryonic development remains unexplored.This study aims to investigate the influence of Lut on porcine embryonic development and to elucidate the underlying mechanism.Results After undergoing parthenogenetic activation(PA)or in vitro fertilization,embryos supplemented with 0.5μmol/L Lut displayed a significant enhancement in cleavage and blastocyst formation rates,with an increase in total cell numbers and a decrease in the apoptosis rate compared to the control.Measurements on D2 and D6 revealed that embryos with Lut supplementation had lower ROS levels and higher glutathione levels compared to the control.Moreover,Lut supplementation significantly augmented mitochondrial content and membrane potential.Intriguingly,activation of the Nrf2/Keap1 signaling pathway was observed in embryos supplemented with Lut,leading to the upregulation of antioxidant-related gene transcription levels.To further validate the relationship between the Nrf2/Keap1 signaling pathway and effects of Lut in porcine embryonic development,we cultured PA embryos in a medium supplemented with brusatol,with or without the inclusion of Lut.The positive effects of Lut on developmental competence were negated by brusatol treatment.Conclusions Our findings indicate that Lut-mediated activation of the Nrf2/Keap1 signaling pathway contributes to the enhanced production of porcine embryos with high developmental competence,and offers insight into the mechanisms regulating early embryonic development.展开更多
[Objective] The research aimed to enhance culture efficiencies of oocyte and embryo of goat in vitro and to explore serum-free culture system in vitro.[Method] At present,the conventional solutions of oocyte maturatio...[Objective] The research aimed to enhance culture efficiencies of oocyte and embryo of goat in vitro and to explore serum-free culture system in vitro.[Method] At present,the conventional solutions of oocyte maturation and embryo development in vitro were always added into 1% ITS(Insulin-transferrin-selenium) or using 1% ITS to replace FBS in 2 kinds culture solutions for conducting in vitro cultures of goat oocyte and parthenogenetic embryo.The influences of ITS on their developments were detected.[Result] ITS in maturation liquid of oocytes could not increase oocytes maturation rate but significantly increased blastocyst rate (58.06% vs. 48.19%)of parthenogenetic embryo.If FBS in maturation liquid of oocytes was replaced by ITS, the maturation rate, cleavage rate and blastocyst rate were basically unchanged.Adding ITS into embryo medium could increase blastocyst rate (68.30% vs. 56.82%)of parthenogenetic embryo of goat.If FBS in embryo medium was replaced by ITS,the cleavage rate didn’t change basically,while the blastocyst rate in ITS was obviously lower than that in FBS group(42.33% vs.56.82%).[Conclusion] ITS could promote maturation of oocyte in vitro and early embryonic development, in addition,ITS could replace serum in maturation medium of oocyte as serum-free culture system for conducting relevant researches.展开更多
In this study we studied the factors influencing the callus induction from mature embryos of maize inbred lines Qi 319, Zhen 58, Chang 7 -2, Lx 9801 and 81162, such as genotype, combination of plant growth regulators,...In this study we studied the factors influencing the callus induction from mature embryos of maize inbred lines Qi 319, Zhen 58, Chang 7 -2, Lx 9801 and 81162, such as genotype, combination of plant growth regulators, and low-temperature pretreatment. The results showed that the induction rate of Qi 319 was the highest among the four genotypes tested; combination of 4.0 mg/L 2,4-D + 0.5 mg/L 6-BA was suitable for inducing callus from mature embryos; three days of 4℃ pretreatment can promote the callus induction significantly. The indices optimized in the present study are helpful for establishing genetic transformation system in maize without considering seasonal variation.展开更多
基金This study was financially supported by Universitas Hasanuddin through Penelitian Fundamental Kolaboratif(PFK)(letter of appointment number:00323/UN4.22/PT.0103/2023).
文摘Objective:To evaluate the effect of glutathione(GSH)supplementation in maturation and adaptation media on oocyte development,embryo quality,and oocyte viability after vitrification.Methods:The GSH concentrations were classified into four groups(0,0.5,1.0,and 1.5 mM)which were added to the maturation medium.The maturation process was conducted in vitro for 24 h.Following maturation,oocytes were fertilized with Bali bull semen for 5-6 h and then cultured for 48 h.The morphological quality of ocytes matured with GSH addition and the vitrification method used was evaluated.Parameters assessed included maturation rate,fertilization rate,embryo development,post-vitrification oocyte morphology,and quality of post-vitrification oocytes with GSH added to the adaptation medium.Results:The addition of GSH to the maturation medium significantly improved oocyte quality and embryo development(P<0.05).Specifically,adding 1.5 mM GSH increased the percentage of oocytes reaching metaphase栻from 57.6%without GSH oocytes to 79.0%with 1.5 mM GSH,two-pronuclei fertilization from 47.0%to 72.7%,embryo development from 37.1%to 57.2%,morula formation from 14.6%to 33.7%,and blastocyst formation from 8.1%to 23.8%.Additionally,the survival rate of oocytes post-vitrification increased to 75%with GSH supplementation.Conclusions:The addition of 0.5-1.5 mM of GSH to the maturation and adaptation media significantly enhanced the metaphase栻stage,fertilization rates,cleavage rates,and the survival of oocytes after vitrification.Among the concentrations of 1.5 mM was the most effective in increasing oocyte development and maintaining oocytes viability post-vitrification.
基金funded by the European Commission H2020 Research and Innovation Programme through the HARNESSTOM innovation action(Grant No.101000716)Grant CIPROM/2021/020(project SOLECO)funded by Conselleria d’Innovació,Universitats,Ciència i Societat Digital(Generalitat Valenciana,Spain)Pietro Gramazio received a post-doctoral fellowship(Grant No.RYC2021-031999-I)funded by MCIN/AEI/10.13039/501100011033 and by“European Union NextGenerationEU/PRTR”。
文摘Unlike other major crops,little research has been performed on tomato to reduce the generation time for speed breeding.We evaluated several agronomic treatments to reduce the generation time of tomato in the‘M82'(determinate)and‘Moneymaker'(indeterminate)varieties and evaluated the best combination in conjunction with embryo rescue.Five container sizes with volumes of 0.2 L(XS),0.45 L(S),0.8 L(M),1.3 L(L),and6 L(XL),were evaluated in the first experiment under the autumn cycle.We found that plants grown in XL containers exhibited better development and required less time from sowing to anthesis(DSA)and from anthesis to fruit ripening(DAR).In the second experiment,using XL containers in the autumn-winter cycle,we evaluated the effects of cold priming at the cotyledonary stage,water stress,P supplementation,and K supplementation on generation time.Compared to the control,we found that cold priming significantly reduced the number of leaves,plant height to first the inflorescence,and DSA(2.7 d),whereas K supplementation reduced the DAR(8.8 d).In contrast,water stress and P supplementation did not significantly affect any of the measured traits like DAR,DSA or fruit set.To validate these data,in a third experiment with XL containers in the spring-summer cycle,the combination of cold priming and K supplementation was tested,confirming the significant effect of this combination on the reduction of generation time(2.9 d for DSA and 3.9 d for DAR)compared to the control.Embryo rescue during the cell expansion cycle(average of 22.0 d and 23.3 d after anthesis for‘M82'and‘Moneymaker',respectively)allowed the shortening of the generation time by 8.7 d in‘M82'and 11.6 d in‘Moneymaker'compared to the in planta fruit ripening.The combination of agronomic treatments with embryo rescue can effectively increase the number of generations per year from three to four for speed breeding of tomato.
文摘Objective Both sequential embryo transfer(SeET)and double-blastocyst transfer(DBT)can serve as embryo transfer strategies for women with recurrent implantation failure(RIF).This study aims to compare the effects of SeET and DBT on pregnancy outcomes.Methods Totally,261 frozen-thawed embryo transfer cycles of 243 RIF women were included in this multicenter retrospective analysis.According to different embryo quality and transfer strategies,they were divided into four groups:group A,good-quality SeET(GQ-SeET,n=38 cycles);group B,poor-quality or mixed-quality SeET(PQ/MQ-SeET,n=31 cycles);group C,good-quality DBT(GQ-DBT,n=121 cycles);and group D,poor-quality or mixed-quality DBT(PQ/MQ-DBT,n=71 cycles).The main outcome,clinical pregnancy rate,was compared,and the generalized estimating equation(GEE)model was used to correct potential confounders that might impact pregnancy outcomes.Results GQ-DBT achieved a significantly higher clinical pregnancy rate(aOR 2.588,95%CI 1.267–5.284,P=0.009)and live birth rate(aOR 3.082,95%CI 1.482–6.412,P=0.003)than PQ/MQ-DBT.Similarly,the clinical pregnancy rate was significantly higher in GQ-SeET than in PQ/MQ-SeET(aOR 4.047,95%CI 1.218–13.450,P=0.023).The pregnancy outcomes of GQ-SeET were not significantly different from those of GQ-DBT,and the same results were found between PQ/MQ-SeET and PQ/MQ-DBT.Conclusion SeET relative to DBT did not seem to improve pregnancy outcomes for RIF patients if the embryo quality was comparable between the two groups.Better clinical pregnancy outcomes could be obtained by transferring good-quality embryos,no matter whether in SeET or DBT.Embryo quality plays a more important role in pregnancy outcomes for RIF patients.
文摘Objective:To determine the relationship between the early embryo viability assessment(EEVA)and blastocyst morphological parameters and pregnancy outcomes.Methods:This retrospective cohort study was conducted on 291 intracytoplasmic sperm injection cycles including 2522 embryos with indications of prolonging embryo culture to the blastocyst stage in the Genea embryo review incubator,and 511 single vitrified-warmed blastocyst transfer cycles from January 2020 to June 2023.The EEVA system produced an EEVA score from E1(best)to E5(worse)for the potential of blastocyst formation.Blastocyst morphology was evaluated.The association between the EEVA score and each type of blastocyst morphology,implantation rate,clinical pregnancy,and ongoing pregnancy were assessed using generalized estimating equations.Results:The inner cell mass A(ICM A),trophectoderm A(TE A),blastocoele expansion degree of 3,4,5,6,7 rates were higher with lower the EEVA score.The adjusted odd ratio(aOR)(E5 vs E1)was 0.3 for ICM A,0.174 for TE A and 0.210 for BL3,4,5,6,7(all P<0.001),suggesting a significant association between lower EEVA scores and improved embryo quality.The implantation,clinical pregnancy,and ongoing pregnancy rate were also higher with lower the EEVA score.The aOR of E5 vs E1 was 0.245 for implantation,0.185 for clinical pregnancy and 0.200 for ongoing pregnancy rate(P<0.001).Conclusions:There were associations between blastocyst morphology,pregnancy outcome and EEVA scores.The good blastocyst morphology and pregnancy outcomes are higher with lower the EEVA score.
基金supported by the National Natural Science Foundationof China (No. 33372201)。
文摘The endochondral ossification of hindlimb is essential to a bird’s ability to stand,walk and fly.Most hindlimb is ossified in the embryos before hatching in precocial birds.However,the molecular mechanisms of hindlimb ossification in birds is still unclear.Therefore,we tried to examine the process of hindlimb ossification and its molecular regulation by using an animal model—Japanese Quail(Coturnix japonica).We selected four critical stages(Embryo Day:E6,E8,E12 and E16) of skeletal development of embryonic quails for hindlimb skeleton staining to show the process of endochondral ossification and to examine the molecular regulation of endochondral osteogenesis by RNA-Seq analysis.The results showed that ossification became increased with embryonic development and most hindlimb was ossified before hatching.RNA-Seq analysis revealed that various signaling pathways were involved with endochondral ossification with thyroid hormone signaling and WNT signaling pathway particularly enriched.Moreover,the expression levels of 42 genes were continuously upregulated and 14 genes were continuously downregulated from E6 to E16.The present study might provide new insights into complex molecular mechanisms in regulation of endochondral ossification.
基金funded by a USDA Multistate (2052R) grant from the CTAHR University of Hawaii at Manoa to B.M.
文摘Due to high environmental temperatures and climate change, heat stress is a severe concern for poultry health and production, increasing the propensity for food insecurity. With climate change causing higher temperatures and erratic weather patterns in recent years, poultry are increasingly vulnerable to this environmental stressor. To mitigate heat stress, nutritional, genetic, and managerial strategies have been implemented with some success. However, these strategies did not adequately and sustainably reduce the heat stress. Therefore, it is crucial to take proactive measures to mitigate the effects of heat stress on poultry, ensuring optimal production and promoting poultry well-being. Embryonic thermal manipulation(TM) involves manipulating the embryonic environment's temperature to enhance broilers' thermotolerance and growth performance. One of the most significant benefits of this approach is its cost-effectiveness and saving time associated with traditional management practices. Given its numerous advantages, embryonic TM is a promising strategy for enhancing broiler production and profitability in the poultry industry. TM increases the standard incubation temperature in the mid or late embryonic stage to induce epigenetic thermal adaption and embryonic metabolism. Therefore, this review aims to summarize the available literature and scientific evidence of the beneficial effect of pre-hatch thermal manipulation on broiler health and performance.
基金supported by Ghent University(Grant:Bijzonder Onderzoeksfonds Geconcerteerde Onderzoeksactie 2018000504[GOA030-18 BOF])supported by Ghent University:BOF.STG.2022.02.0034.01+1 种基金supported by China Scholarship Council:Grant 202006910034supported by Fonds Wetenschappelijk Onderzoek:Grant 1228821N and 12A2H24N。
文摘Transfer RNA-derived small RNAs(tsRNAs)have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells.However,it is unknown whether tsRNAs also regulate embryo hatching.In this study,we mined the sequencing data of a previous experiment in which we demonstrated that the microRNA(miRNA)cargo of preimplantation embryonic extracellular vesicles(EVs)influences embryo development.We thus profiled the tsRNA cargo of EVs secreted by blastocysts and non-blastocysts.The majority of tsRNAs was identified as tRNA halves originating from the 5'ends of tRNAs.Among the 148 differentially expressed tsRNAs,the 19 nt tRNA fragment(tRF)tDR-14:32-Glu-CTC-1 was found to be significantly up-regulated in EVs derived from non-blastocysts.RT-qPCR assays confirmed its significant up-regulation in non-blastocyst embryos and their conditioned medium compared to the blastocyst group(P<0.05).Inhibition of tDR-14:32-Glu-CTC-1 by supplementing antagomirs to the conditioned medium improved embryo hatching(P<0.05).Transcriptomic analysis of embryos treated with tDR-14:32-Glu-CTC-1 antagomirs further showed differential expression of genes that are associated with embryo hatching and implantation.In summary,tDR-14:32-Glu-CTC-1 is up-regulated in non-blastocyst embryos and their secretions,and inhibition of tDR-14:32-Glu-CTC-1 promotes embryo hatching,while influencing embryo implantation-related genes and pathways.These results indicate that embryonic EVs containing specific tRFs may regulate preimplantation embryo development.
基金Project supported by the National Natural Science Foundation of China (Grant No.11974184)。
文摘The thermal-elastic martensitic transformation from high-temperature Ni_(2)In-type hexagonal structure to low-temperature TiNiSi-type orthorhombic structure has been widely studied in MnMX(M=Ni or Co,and X=Ge or Si)alloys.However,the answer to how the orthorhombic martensite nucleates and grows within the hexagonal parent is still unclear.In this work,the hexagonal-orthorhombic martensitic transformation in a Co and Ge co-substituted MnNiSi is investigated.One can find some orthorhombic laths embedded in the hexagonal parent at a temperature above the martensitic transformation start temperature(M_(s)).With the the sample cooing to M_(s),the laths turn broader,indicating that the martensitic transformation starts from these pre-existing orthorhombic laths.Microstructure observation suggests that these pre-existing orthorhombic laths do not originate from the hexagonal-orthorhombic martensitic transformation because of the difference between atomic occupations of doping elements in the hexagonal parent and those in the preexisting orthorhombic laths.The phenomenological crystallographic theory and experimental investigations prove that the pre-existing orthorhombic lath and generated orthorhombic martensite have the same crystallography relationship to the hexagonal parent.Therefore,the orthorhombic martensite can take these pre-existing laths as embryos and grow up.This work implies that the martensitic transformation in MnNiSi_(1-x)(CoNiGe)_(x) alloy is initiated by orthorhombic embryos.
基金supported by the Fundamental Research Grant Scheme(FRGS)[FRGS/1/2020/SKK06/UNIKL/02/1],from the Ministry of Higher Education,Malaysia.
文摘Objective:To investigate the effects of coenzyme Q10(CoQ10)supplementation on post-vitrification embryo development and gross morphology.Methods:Balb/c mouse embryos were cultured in potassium simplex optimised medium(KSOM)with varying CoQ10 concentrations[0(control),20,40,and 60μM].The most effective CoQ10 concentration(40μM)was selected for subsequent post-vitrification morphology study.Embryos were randomly divided into four groups:Group A(non-vitrified without CoQ10),Group B(non-vitrified with CoQ10),Group C(vitrified without CoQ10),and Group D(vitrified with CoQ10),followed by vitrification at the 8-cell stage.Survival rates and development until the blastocyst stage were evaluated through morphological examinations using ASEBIR's system,distinguishing normal and abnormal embryos.Results:Supplementation of 40μM CoQ10 significantly increased blastocyst formation(95%)compared to the control group(92%),20μM(62%),and 60μM(56%)(P<0.001).Following vitrification,Group D exhibited a significant increase in blastocyst formation(92%)compared to Group C(82%)(P<0.05).Morphological assessments indicated superior embryo quality in Group B over Group D during the cleavage stage,morula,and blastocyst(P<0.05).Conclusions:CoQ10 supplementation exhibits promising potential to enhance preimplantation embryo development,increase blastocyst formation rates,and improve embryo quality post-vitrification.This offers a promising approach to mitigate oxidative stress on embryos,potentially improving overall assisted reproductive technology outcomes.
基金This work was supported by the Science and Technology Development Plan Project of Jilin Province,China(20200402115NC).
文摘Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.Thereis thus a pressing need to develop an organogenesis protocol for in vitro propagation of T.amurensis to alleviate ashortage of high-quality T.amurensis seedlings.Here,we established a rapid in vitro propagation system forT.amurensis from mature zygotic embryos and analyzed the effects of plant growth regulators and culture mediain different stages.We found that Woody plant medium(WPM)was the optimal primary culture medium formature zygotic embryos.The highest callus induction percentage(68.76%)and number of axillary buds induced(3.2)were obtained in WPM+0.89μmol/L 6-benzyladenine(6-BA)+0.46μmol/L kinetin(KT)+0.25μmol/Lindole-3-butryic acid(IBA)+1.44μmol/L gibberellin A_(3)(GA_(3)).The multiple shoot bud development achievedthe highest percentage(83.32%)in the Murashige and Skoog(MS)+2.22μmol/L 6-BA+0.25μmol/L IBA+1.44μmol/L GA_(3).The rooting percentage(96.70%)was highest in 1/2 MS medium+1.48μmol/L IBA.Thesurvival percentage of transplanting plantlets was 82.22%in soil:vermiculite:perlite(5:3:1).Our study is the firstto establish an effective organogenesis protocol for T.amurensis using mature zygotic embryos.
基金supported by the Korea Research Institute of Bioscience and Biotechnology(KRIBB)Research Initiative Program(KGM4252331,KGM5382322),Republic of Korea.
文摘Background Oxidative stress,caused by an imbalance in the production and elimination of intracellular reactive oxygen species(ROS),has been recognized for its detrimental effects on mammalian embryonic development.Luteolin(Lut)has been documented for its protective effects against oxidative stress in various studies.However,its specific role in embryonic development remains unexplored.This study aims to investigate the influence of Lut on porcine embryonic development and to elucidate the underlying mechanism.Results After undergoing parthenogenetic activation(PA)or in vitro fertilization,embryos supplemented with 0.5μmol/L Lut displayed a significant enhancement in cleavage and blastocyst formation rates,with an increase in total cell numbers and a decrease in the apoptosis rate compared to the control.Measurements on D2 and D6 revealed that embryos with Lut supplementation had lower ROS levels and higher glutathione levels compared to the control.Moreover,Lut supplementation significantly augmented mitochondrial content and membrane potential.Intriguingly,activation of the Nrf2/Keap1 signaling pathway was observed in embryos supplemented with Lut,leading to the upregulation of antioxidant-related gene transcription levels.To further validate the relationship between the Nrf2/Keap1 signaling pathway and effects of Lut in porcine embryonic development,we cultured PA embryos in a medium supplemented with brusatol,with or without the inclusion of Lut.The positive effects of Lut on developmental competence were negated by brusatol treatment.Conclusions Our findings indicate that Lut-mediated activation of the Nrf2/Keap1 signaling pathway contributes to the enhanced production of porcine embryos with high developmental competence,and offers insight into the mechanisms regulating early embryonic development.
文摘[Objective] The research aimed to enhance culture efficiencies of oocyte and embryo of goat in vitro and to explore serum-free culture system in vitro.[Method] At present,the conventional solutions of oocyte maturation and embryo development in vitro were always added into 1% ITS(Insulin-transferrin-selenium) or using 1% ITS to replace FBS in 2 kinds culture solutions for conducting in vitro cultures of goat oocyte and parthenogenetic embryo.The influences of ITS on their developments were detected.[Result] ITS in maturation liquid of oocytes could not increase oocytes maturation rate but significantly increased blastocyst rate (58.06% vs. 48.19%)of parthenogenetic embryo.If FBS in maturation liquid of oocytes was replaced by ITS, the maturation rate, cleavage rate and blastocyst rate were basically unchanged.Adding ITS into embryo medium could increase blastocyst rate (68.30% vs. 56.82%)of parthenogenetic embryo of goat.If FBS in embryo medium was replaced by ITS,the cleavage rate didn’t change basically,while the blastocyst rate in ITS was obviously lower than that in FBS group(42.33% vs.56.82%).[Conclusion] ITS could promote maturation of oocyte in vitro and early embryonic development, in addition,ITS could replace serum in maturation medium of oocyte as serum-free culture system for conducting relevant researches.
基金Supported by Heilongjiang August First Land Reclamation University(Establishment of fast and high-frequency regeneration system of maize)~~
文摘In this study we studied the factors influencing the callus induction from mature embryos of maize inbred lines Qi 319, Zhen 58, Chang 7 -2, Lx 9801 and 81162, such as genotype, combination of plant growth regulators, and low-temperature pretreatment. The results showed that the induction rate of Qi 319 was the highest among the four genotypes tested; combination of 4.0 mg/L 2,4-D + 0.5 mg/L 6-BA was suitable for inducing callus from mature embryos; three days of 4℃ pretreatment can promote the callus induction significantly. The indices optimized in the present study are helpful for establishing genetic transformation system in maize without considering seasonal variation.