Emerald is a green(Cr-bearing)variety of beryl.It has also been one of the highest value and highly demanded gemstones in the world.For this reason,the methods for synthesis emerald(i.e.,hydrothermal,flux grown)have b...Emerald is a green(Cr-bearing)variety of beryl.It has also been one of the highest value and highly demanded gemstones in the world.For this reason,the methods for synthesis emerald(i.e.,hydrothermal,flux grown)have been constantly developed.In many cases,it is hard to distinguish the natural emerald from the synthetic one using the basic instruments.Therefore,with the advantage of non-destructive technique,the infrared spectroscopy has been efficiently applied for the task.In this study,to find the potential technique in FTIR spectroscopy for classifying between natural and synthetic emerald(hydrothermal and flux-grown),the observed spectra from the Attenuated Total Reflectance Radiation(ATR),Diffuse Reflectance(DRIFT),transflectance,and specular reflection techniques were compared.The result showed that the spectra obtained from the transflectance and the DRIFT techniques were similar with equal spectral qualities.Unlike the diffuse reflectance spectra,the transflectance spectra were not affected by the sample orientations.The spectral features associated with water molecule in the crystal structure were clearly observed in both the DRIFT and transflectance spectra.Although the spectral features associated with weak absorption bands of water were not observed in both the DRIFT and transflectance spectra,the position of strong absorption band at 3 800-3 500 cm^(-1) and 1 635 cm^(-1) could be detected in the ATR spectra.In addition,the lack of absorption of water between 4 000 and 3 400 cm^(-1) in flux-grown emerald samples is the clue to separate it from the natural and hydrothermal one.In the meantime,the absence of the strong absorption peaks between 2 300 and 1 400 cm^(-1) in hydrothermal emerald can differentiate it from the natural one.展开更多
Well-formed crystals of emerald, Be3AI2Si6O18:Cr, were easily grown from an Na2O-MoO3 flux by an isothermal technique. The crystal growth was conducted by heating a mixture of solute and flux at 1 100 ℃ for 24 h. The...Well-formed crystals of emerald, Be3AI2Si6O18:Cr, were easily grown from an Na2O-MoO3 flux by an isothermal technique. The crystal growth was conducted by heating a mixture of solute and flux at 1 100 ℃ for 24 h. The evaporation loss of flux depended on the amount of Na2O added to MoO3. Emerald crystals of lengths up to 2.1 mm and widths of 1. 4 mm were grown. The crystal sizes were dependent on the evaporation loss of the flux. The obtained crystals were transparent and exhibited the typical emerald-green color. The form of the emerald crystals was a twelve-sided prism bounded by well-developed faces. The aspect ratios were in the region of 1. 4 to 2. 3. The density was (2. 64±0.02) g/cm3. The IR absorption bands were in good agreement with the literature data.展开更多
KINGKAI Lake in east Jixi City, HelongjiangProvince, forms a bound-ary between China and Russia. It has an area of 4,380 square kilometers, and empties into China’s easternmost Wusuli River.
文摘Emerald is a green(Cr-bearing)variety of beryl.It has also been one of the highest value and highly demanded gemstones in the world.For this reason,the methods for synthesis emerald(i.e.,hydrothermal,flux grown)have been constantly developed.In many cases,it is hard to distinguish the natural emerald from the synthetic one using the basic instruments.Therefore,with the advantage of non-destructive technique,the infrared spectroscopy has been efficiently applied for the task.In this study,to find the potential technique in FTIR spectroscopy for classifying between natural and synthetic emerald(hydrothermal and flux-grown),the observed spectra from the Attenuated Total Reflectance Radiation(ATR),Diffuse Reflectance(DRIFT),transflectance,and specular reflection techniques were compared.The result showed that the spectra obtained from the transflectance and the DRIFT techniques were similar with equal spectral qualities.Unlike the diffuse reflectance spectra,the transflectance spectra were not affected by the sample orientations.The spectral features associated with water molecule in the crystal structure were clearly observed in both the DRIFT and transflectance spectra.Although the spectral features associated with weak absorption bands of water were not observed in both the DRIFT and transflectance spectra,the position of strong absorption band at 3 800-3 500 cm^(-1) and 1 635 cm^(-1) could be detected in the ATR spectra.In addition,the lack of absorption of water between 4 000 and 3 400 cm^(-1) in flux-grown emerald samples is the clue to separate it from the natural and hydrothermal one.In the meantime,the absence of the strong absorption peaks between 2 300 and 1 400 cm^(-1) in hydrothermal emerald can differentiate it from the natural one.
文摘Well-formed crystals of emerald, Be3AI2Si6O18:Cr, were easily grown from an Na2O-MoO3 flux by an isothermal technique. The crystal growth was conducted by heating a mixture of solute and flux at 1 100 ℃ for 24 h. The evaporation loss of flux depended on the amount of Na2O added to MoO3. Emerald crystals of lengths up to 2.1 mm and widths of 1. 4 mm were grown. The crystal sizes were dependent on the evaporation loss of the flux. The obtained crystals were transparent and exhibited the typical emerald-green color. The form of the emerald crystals was a twelve-sided prism bounded by well-developed faces. The aspect ratios were in the region of 1. 4 to 2. 3. The density was (2. 64±0.02) g/cm3. The IR absorption bands were in good agreement with the literature data.
文摘KINGKAI Lake in east Jixi City, HelongjiangProvince, forms a bound-ary between China and Russia. It has an area of 4,380 square kilometers, and empties into China’s easternmost Wusuli River.