Based on the existed equipment (the power line carrier, optic fiber, twisted pair and wireless apparatus) being used to the same route in the current communication net of distribution management system (DMS), this pap...Based on the existed equipment (the power line carrier, optic fiber, twisted pair and wireless apparatus) being used to the same route in the current communication net of distribution management system (DMS), this paper presents a new kind of communication monitor DMS, which provides a communication monitoring interface and then by DMS, data transfer problem from field terminal unit to junction center station can be solved and the communication channels can also be supervised. At the same time, synthetically using computer communication, internet technology and database technology, this system can realize the real time monitoring and fault locating in the communication network.展开更多
This paper investigates impact of noise and signal averaging on patient control in anesthesia applications, especially in networked control system settings such as wireless connected systems, sensor networks, local ar...This paper investigates impact of noise and signal averaging on patient control in anesthesia applications, especially in networked control system settings such as wireless connected systems, sensor networks, local area networks, or tele-medicine over a wide area network. Such systems involve communication channels which introduce noises due to quantization, channel noises, and have limited communication bandwidth resources. Usually signal averaging can be used effectively in reducing noise effects when remote monitoring and diagnosis are involved. However, when feedback is intended, we show that signal averaging will lose its utility substantially. To explain this phenomenon, we analyze stability margins under signal averaging and derive some optimal strategies for selecting window sizes. A typical case of anesthe-sia depth control problems is used in this development.展开更多
Rapid prototyping,real-time control and monitoring of various events in robots are crucial requirements for research in the fields of modular and swarm robotics.A large quantities of resources(time,man power,infrastru...Rapid prototyping,real-time control and monitoring of various events in robots are crucial requirements for research in the fields of modular and swarm robotics.A large quantities of resources(time,man power,infrastructure,etc.)are often invested in programming,interfacing the sensors,debugging the response to algorithms during prototyping and operational phases of a robot development cycle.The cost of developing an optimal infrastructure to efficiently address such control and monitoring requirements increases significantly in the presence of mobile robots.Though numerous solutions have been developed for minimizing the resources spent on hardware prototyping and algorithm validation in both static and mobile scenarios,it can be observed that researchers have either chosen methodologies that conflict with the power and infrastructure constraints of the research field or generated constrained solutions whose applications are restricted to the field itself.This paper develops a solution for addressing the challenges in controlling heterogeneous mobile robots.A platform named Quanta-a cost effective,energy efficient and high-speed wireless infrastructure is prototyped as a part of the research in the field of modular robotics.Quanta is capable of controlling and monitoring various events in/using a robot with the help of a light-weight communication protocol independent of the robot hardware architecture(s).展开更多
A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in th...A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in the need for applications and methodologies that are capable of automatically analyzing these contents. These technologies can be applied in automatic contentanalysis and emergency response systems. Breaks in manual communication usually occur in emergencies leading to accidents and equipment damage. The audio signal does a good job by sending a signal underground, which warrants action from an emergency management team at the surface. This paper, therefore, seeks to design and simulate an audio signal alerting and automatic control system using Unity Pro XL to substitute manual communication of emergencies and manual control of equipment. Sound data were trained using the neural network technique of machine learning. The metrics used are Fast Fourier transform magnitude, zero crossing rate, root mean square, and percentage error. Sounds were detected with an error of approximately 17%;thus, the system can detect sounds with an accuracy of 83%. With more data training, the system can detect sounds with minimal or no error. The paper, therefore, has critical policy implications about communication, safety, and health for underground mine.展开更多
This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS)...This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.展开更多
The Smart Grid has three main characteristics, which are to some degree antagonistic. These characteristics are: provision of good power quality, energy cost reduction and improvement in the reliability of the grid. T...The Smart Grid has three main characteristics, which are to some degree antagonistic. These characteristics are: provision of good power quality, energy cost reduction and improvement in the reliability of the grid. The need to ensure that they can be accomplished together demands a much richer ICT monitoring and control network than the current system. In this paper we particularly investigate the design and deployment of the ICT system in the urban environment, specifically in a university campus that is embedded in a city, thus it represents the Neighbourhood Area Network (NAN) level of the Smart Grid. In order to design an ICT infrastructure, we have introduced two related architectures: namely communications network architecture and a software architecture. Having access to the characteristics of a real NAN guides us to choose appropriate communication technologies and identify the actual requirements of the system. To implement these architectures at this level we need to gather and process information from environmental sensors (monitoring e.g. temperature, movement of people and vehicles) that can provide useful information about changes in the loading of the NAN, with information from instrumentation of the Power Grid itself. Energy constraints are one of the major limitations of the communication network in the Smart Grid, especially where wireless networking is proposed. Thus we analyse the most energy efficient method of collecting and sending data. The main contribution of this research is that we propose and implement an energy efficient ICT network and describe our software architecture at the NAN level, currently very underdeveloped. We also discuss our experimental results. To our knowledge, no such architectures have yet been implemented for collecting data which can provide the basis of Decision Support Tools (DSTs).展开更多
Emergency communication networks play a vital role in disaster monitoring,transmission,and application during disaster emergency response(DER),however,the performance and stability of edge nodes in the emergency commu...Emergency communication networks play a vital role in disaster monitoring,transmission,and application during disaster emergency response(DER),however,the performance and stability of edge nodes in the emergency communication networks are often weak due to limited communication and computation resources.This weakness directly affects the quality,of service(Qos)of the geospatial edge service(GES)chains involved in emergency monitoring.Existing research predominantly addresses service compositions in stable environments,neglecting the aggregation of efficient and robust GES chains in emergency communication networks.This study proposes an evolutionary_particie swarm optimization(EPSO)-based emergency monitoring GES chain in an_emergency communication network.it includes a GES chain model of emergency environment monitoring for tailing areas,as well as the designs of the particle chromosome encoding method,fitness evaluation model,and particle chromosome swarm update operators of the EPSO-based GES chain.Finally,the study conducts emergency environment monitoring experiments for tailing areas using the proposed method.Experiments results demonstrate that the proposed method significantly enhances the efficiency,stability,and reliability of emergency monitoring GEs chains in the emergency communication network.This is crucial to providing fast and reliable services for DER during natural disasters.展开更多
文摘Based on the existed equipment (the power line carrier, optic fiber, twisted pair and wireless apparatus) being used to the same route in the current communication net of distribution management system (DMS), this paper presents a new kind of communication monitor DMS, which provides a communication monitoring interface and then by DMS, data transfer problem from field terminal unit to junction center station can be solved and the communication channels can also be supervised. At the same time, synthetically using computer communication, internet technology and database technology, this system can realize the real time monitoring and fault locating in the communication network.
文摘This paper investigates impact of noise and signal averaging on patient control in anesthesia applications, especially in networked control system settings such as wireless connected systems, sensor networks, local area networks, or tele-medicine over a wide area network. Such systems involve communication channels which introduce noises due to quantization, channel noises, and have limited communication bandwidth resources. Usually signal averaging can be used effectively in reducing noise effects when remote monitoring and diagnosis are involved. However, when feedback is intended, we show that signal averaging will lose its utility substantially. To explain this phenomenon, we analyze stability margins under signal averaging and derive some optimal strategies for selecting window sizes. A typical case of anesthe-sia depth control problems is used in this development.
文摘Rapid prototyping,real-time control and monitoring of various events in robots are crucial requirements for research in the fields of modular and swarm robotics.A large quantities of resources(time,man power,infrastructure,etc.)are often invested in programming,interfacing the sensors,debugging the response to algorithms during prototyping and operational phases of a robot development cycle.The cost of developing an optimal infrastructure to efficiently address such control and monitoring requirements increases significantly in the presence of mobile robots.Though numerous solutions have been developed for minimizing the resources spent on hardware prototyping and algorithm validation in both static and mobile scenarios,it can be observed that researchers have either chosen methodologies that conflict with the power and infrastructure constraints of the research field or generated constrained solutions whose applications are restricted to the field itself.This paper develops a solution for addressing the challenges in controlling heterogeneous mobile robots.A platform named Quanta-a cost effective,energy efficient and high-speed wireless infrastructure is prototyped as a part of the research in the field of modular robotics.Quanta is capable of controlling and monitoring various events in/using a robot with the help of a light-weight communication protocol independent of the robot hardware architecture(s).
文摘A large part of our daily lives is spent with audio information. Massive obstacles are frequently presented by the colossal amounts of acoustic information and the incredibly quick processing times. This results in the need for applications and methodologies that are capable of automatically analyzing these contents. These technologies can be applied in automatic contentanalysis and emergency response systems. Breaks in manual communication usually occur in emergencies leading to accidents and equipment damage. The audio signal does a good job by sending a signal underground, which warrants action from an emergency management team at the surface. This paper, therefore, seeks to design and simulate an audio signal alerting and automatic control system using Unity Pro XL to substitute manual communication of emergencies and manual control of equipment. Sound data were trained using the neural network technique of machine learning. The metrics used are Fast Fourier transform magnitude, zero crossing rate, root mean square, and percentage error. Sounds were detected with an error of approximately 17%;thus, the system can detect sounds with an accuracy of 83%. With more data training, the system can detect sounds with minimal or no error. The paper, therefore, has critical policy implications about communication, safety, and health for underground mine.
文摘This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.
文摘The Smart Grid has three main characteristics, which are to some degree antagonistic. These characteristics are: provision of good power quality, energy cost reduction and improvement in the reliability of the grid. The need to ensure that they can be accomplished together demands a much richer ICT monitoring and control network than the current system. In this paper we particularly investigate the design and deployment of the ICT system in the urban environment, specifically in a university campus that is embedded in a city, thus it represents the Neighbourhood Area Network (NAN) level of the Smart Grid. In order to design an ICT infrastructure, we have introduced two related architectures: namely communications network architecture and a software architecture. Having access to the characteristics of a real NAN guides us to choose appropriate communication technologies and identify the actual requirements of the system. To implement these architectures at this level we need to gather and process information from environmental sensors (monitoring e.g. temperature, movement of people and vehicles) that can provide useful information about changes in the loading of the NAN, with information from instrumentation of the Power Grid itself. Energy constraints are one of the major limitations of the communication network in the Smart Grid, especially where wireless networking is proposed. Thus we analyse the most energy efficient method of collecting and sending data. The main contribution of this research is that we propose and implement an energy efficient ICT network and describe our software architecture at the NAN level, currently very underdeveloped. We also discuss our experimental results. To our knowledge, no such architectures have yet been implemented for collecting data which can provide the basis of Decision Support Tools (DSTs).
基金funded by the National Natural Science Foundation of China(NSFC)[grant ID 42271425,41871312,42271431].
文摘Emergency communication networks play a vital role in disaster monitoring,transmission,and application during disaster emergency response(DER),however,the performance and stability of edge nodes in the emergency communication networks are often weak due to limited communication and computation resources.This weakness directly affects the quality,of service(Qos)of the geospatial edge service(GES)chains involved in emergency monitoring.Existing research predominantly addresses service compositions in stable environments,neglecting the aggregation of efficient and robust GES chains in emergency communication networks.This study proposes an evolutionary_particie swarm optimization(EPSO)-based emergency monitoring GES chain in an_emergency communication network.it includes a GES chain model of emergency environment monitoring for tailing areas,as well as the designs of the particle chromosome encoding method,fitness evaluation model,and particle chromosome swarm update operators of the EPSO-based GES chain.Finally,the study conducts emergency environment monitoring experiments for tailing areas using the proposed method.Experiments results demonstrate that the proposed method significantly enhances the efficiency,stability,and reliability of emergency monitoring GEs chains in the emergency communication network.This is crucial to providing fast and reliable services for DER during natural disasters.