Thermal energy,i.e.,the electromagnetic energy in the infrared range that originates from the direct solar radiation,outgoing terrestrial radiation,waste heat from combustion of fuels,heat-emitting electrical devices,...Thermal energy,i.e.,the electromagnetic energy in the infrared range that originates from the direct solar radiation,outgoing terrestrial radiation,waste heat from combustion of fuels,heat-emitting electrical devices,decay of radioactive isotopes,organic putrefaction and fermentation,human body heat,and so on,constitutes a huge energy flux circulating on the earth surface.However,most energy converters designed for the conversion of electromagnetic energy into electricity,such as photovoltaic cells,are mainly focused on using a narrow part of the solar energy lying in the visible spectrum,while thermomechanical engines that are fueled by heat in the broad energy range and then convert it into mechanical work or store it as mechanical deformation,are paid less attention.Although the efficiency of thermomechanical devices is relatively low,they can be applied to collect waste heat which otherwise contributes to negative climate changes.In this review,operational principles of thermomechanical energy converters and a description of basic devices and materials that utilize thermal energy are given.In addition to conventional macroscopic engines,based on thermoacoustic,thermomagnetic,thermoelastic,hydride heat converters,and shape memory alloys,the emergent devices are described which are classified as smart actuators,breathing frameworks,thermoacoustic micro-transducers,nanomechanical resonators,plasmomechanical systems,and optothermal walkers.The performance of the different types of thermomechanical energy converters is described and compared.展开更多
Mars is one of the most valuable planets for space exploration.After entering the entry descent and landing(EDL)phase,the spacecraft would carry out a series of procedural deceleration operations and achieve soft land...Mars is one of the most valuable planets for space exploration.After entering the entry descent and landing(EDL)phase,the spacecraft would carry out a series of procedural deceleration operations and achieve soft landing on the surface of Mars.In the process of EDL,the landing platform would encounter a series of irreversible incidents within environmental unpredictability,making this process highly risky.The emergency communication device plays an important role if in the Mars Exploration Program.It can capture and store key dynamic parameters during EDL phase,enabling a high probability of survival in the occurrence of a faulty condition.It can also send the stored data to the Mars obit probe when the communication condition is met.This paper presents a scheme design for the emergency communication device based on its functionality and performance requirements.It includes the design proposal,simulation results,reliability analysis,technical risks and control measures,inheritance and performance compliance which verifies the rationality and correctness of the design.展开更多
基金grateful to the Ministry of Education and Sciences of Ukraine(https://mon.gov.ua)for continuing support(Project#М/66-2022).
文摘Thermal energy,i.e.,the electromagnetic energy in the infrared range that originates from the direct solar radiation,outgoing terrestrial radiation,waste heat from combustion of fuels,heat-emitting electrical devices,decay of radioactive isotopes,organic putrefaction and fermentation,human body heat,and so on,constitutes a huge energy flux circulating on the earth surface.However,most energy converters designed for the conversion of electromagnetic energy into electricity,such as photovoltaic cells,are mainly focused on using a narrow part of the solar energy lying in the visible spectrum,while thermomechanical engines that are fueled by heat in the broad energy range and then convert it into mechanical work or store it as mechanical deformation,are paid less attention.Although the efficiency of thermomechanical devices is relatively low,they can be applied to collect waste heat which otherwise contributes to negative climate changes.In this review,operational principles of thermomechanical energy converters and a description of basic devices and materials that utilize thermal energy are given.In addition to conventional macroscopic engines,based on thermoacoustic,thermomagnetic,thermoelastic,hydride heat converters,and shape memory alloys,the emergent devices are described which are classified as smart actuators,breathing frameworks,thermoacoustic micro-transducers,nanomechanical resonators,plasmomechanical systems,and optothermal walkers.The performance of the different types of thermomechanical energy converters is described and compared.
文摘Mars is one of the most valuable planets for space exploration.After entering the entry descent and landing(EDL)phase,the spacecraft would carry out a series of procedural deceleration operations and achieve soft landing on the surface of Mars.In the process of EDL,the landing platform would encounter a series of irreversible incidents within environmental unpredictability,making this process highly risky.The emergency communication device plays an important role if in the Mars Exploration Program.It can capture and store key dynamic parameters during EDL phase,enabling a high probability of survival in the occurrence of a faulty condition.It can also send the stored data to the Mars obit probe when the communication condition is met.This paper presents a scheme design for the emergency communication device based on its functionality and performance requirements.It includes the design proposal,simulation results,reliability analysis,technical risks and control measures,inheritance and performance compliance which verifies the rationality and correctness of the design.