期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Coordinated restoration optimization of power-gas integrated energy system with mobile emergency sources 被引量:1
1
作者 Lili Hao Wangyu Hu +4 位作者 Chuan Wang Guangzong Wang Yue Sun Jun Chen Xueping Pan 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期205-227,共23页
In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other ... In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other subsystems.The energy supply should be globally optimized during the IES energy supply restoration process to produce the highest restoration net income. Mobile emergency sources can be quickly and flexibly connected to supply energy after an energy outage to ensure a reliable supply to the system, which adds complexity to the decision. This study focuses on a powergas IES with mobile emergency sources and analyzes the coupling relationship between the gas distribution system and the power distribution system in terms of sources, networks, and loads, and the influence of mobile emergency source transportation. The influence of the transient process caused by the restoration operation of the gas distribution system on the power distribution system is also discussed. An optimization model for power-gas IES restoration was established with the objective of maximizing the net income. The coordinated restoration optimization decision-making process was also built to realize the decoupling iteration of the power-gas IES, including system status recognition, mobile emergency source dispatching optimization, gas-to-power gas flow optimization, and parallel intra-partition restoration scheme optimization for both the power and gas distribution systems. A simulation test power-gas IES consisting of an 81-node medium-voltage power distribution network, an 89-node medium-pressure gas distribution network, and four mobile emergency sources was constructed. The simulation analysis verified the efficiency of the proposed coordinated restoration optimization method. 展开更多
关键词 Coordinated restoration optimization Integrated energy system Power-gas decoupling Gas-to-power flow optimization Mobile emergency source
下载PDF
Self-Sustaining of Critical Park Microgrids Integrating Mobile Emergency Generators Subjective to Major Outage
2
作者 Quan Sui Lei Zhang 《CSEE Journal of Power and Energy Systems》 SCIE EI 2024年第4期1441-1453,共13页
In the event of a major power outage,critical park microgrids(PMGs)could be self-sustaining if mobile emergency generators(MEGs)are stationed to share energy.However,the need for privacy protection and the value of fl... In the event of a major power outage,critical park microgrids(PMGs)could be self-sustaining if mobile emergency generators(MEGs)are stationed to share energy.However,the need for privacy protection and the value of flexible power support on minute-time scales have not been given enough attention.To address the problem,this paper proposes a new self-sustaining strategy for critical PMGs integrating MEGs.First,to promote the cooperation between PMG and MEG,a bi-level benefit distribution mechanism is designed,where the participants'multiple roles and contributions are identified,and good behaviors are also awarded.Additionally,to increase the alliance benefits,three loss coordination modes are presented to guide the power exchange at the minute level between the MEG and PMG,considering the volatility of renewable generation and load.On this basis,a multi-time scale power-energy scheduling strategy is formulated via the alternating direction method of multipliers(ADMM)to coordinate the PMG and MEG.Finally,a dimensionality reduction technology is designed to equivalently simplify the optimization problem to facilitate the adaptive-step-based ADMM solution.Simulation studies indicate that the proposed strategy achieves the self-sustaining of PMGs integrating MEGs while increasing the economy by no less than 3.1%. 展开更多
关键词 Distributed optimization loss coordination mode mobile emergency generator park microgrid power-energy self-sustaining privacy protection
原文传递
Dynamic Load Restoration Considering the Interdependencies Between Power Distribution Systems and Urban Transportation Systems 被引量:14
3
作者 Ying Wang Yin Xu +4 位作者 Jiaxu Li Chen Li Jinghan He Jiayu Liu Qiqi Zhang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第4期772-781,共10页
After a major outage,mobile emergency resources(MERs)can be dispatched via the transportation system(TS)for service restoration to critical loads in the power distribution system(PDS).In this case study,the efficiency... After a major outage,mobile emergency resources(MERs)can be dispatched via the transportation system(TS)for service restoration to critical loads in the power distribution system(PDS).In this case study,the efficiency of service restoration in the PDS is associated with the traffic efficiency of the TS,and vice versa,because the PDS and TS are mutually coupled through traffic lights and MERs.This paper proposes a service restoration method considering interdependency between the PDS and TS,which is formulated as a mixed-integer linear program(MILP).The objective includes maximizing the efficiency of both PDS restoration and TS.By solving the MILP,the dynamic load restoration and MER dispatch strategies can be obtained.For the PDS,the availability of MERs,including mobile sources and repair crews,relates to their dispatch in the TS,and their relationship is formulated as mathematical models.For the TS,the dynamic traffic flow is modeled using the cell transmission model and the effect of traffic lights is considered.Case studies validate the effectiveness of the proposed method. 展开更多
关键词 Mobile emergency resources power distribution systems RESILIENCE service restoration urban transportation systems
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部