The solid-liquid interface, which is ubiquitous in nature and our daily life, plays fundamental roles in a variety of physical-chemical-biological- mechanical phenomena, for example in lubrication, crystal growth, and...The solid-liquid interface, which is ubiquitous in nature and our daily life, plays fundamental roles in a variety of physical-chemical-biological- mechanical phenomena, for example in lubrication, crystal growth, and many biological reactions that govern the building of human body and the functioning of brain. A surge of interests in the moving contact line (MCL) problem, which is still going on today, can be traced back to 1970s primarily because of the exis- tence of the "Huh-Scriven paradox". This paper, mainly from a solid mechanics perspective, describes very briefly the multidisciplinary nature of the MCL problem, then summarizes some major advances in this exciting research area, and some future directions are presented.展开更多
基金supported by the National Natural Science Foundation of China(11372313)the Key Research Program of the Chinese Academy of Sciences(KJZD-EW-M01)+1 种基金the Instrument Developing Project ofthe CAS(Y2010031)the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘The solid-liquid interface, which is ubiquitous in nature and our daily life, plays fundamental roles in a variety of physical-chemical-biological- mechanical phenomena, for example in lubrication, crystal growth, and many biological reactions that govern the building of human body and the functioning of brain. A surge of interests in the moving contact line (MCL) problem, which is still going on today, can be traced back to 1970s primarily because of the exis- tence of the "Huh-Scriven paradox". This paper, mainly from a solid mechanics perspective, describes very briefly the multidisciplinary nature of the MCL problem, then summarizes some major advances in this exciting research area, and some future directions are presented.