This paper studies the Least Square Method to define high-speed railway(HSR) earthquake risk and solve the problem of its emergency response mechanism. Based on the construction of a monitoring system for HSR earthqua...This paper studies the Least Square Method to define high-speed railway(HSR) earthquake risk and solve the problem of its emergency response mechanism. Based on the construction of a monitoring system for HSR earthquake emergency response, the technical operational procedures for HSR seismic emergency response are proposed. The quantity, scale, and location of HSR earthquake emergency response mechanism are defined, and the corresponding emergency response system is built. In particular, the earthquake emergency response system can conduct real-time continuous dynamic monitoring of seismic activity along the railway. When earthquake occurs, the intensity of the ground motion is detected by the system. When the earthquake monitoring value reaches the earthquake alarm threshold, it will send an alarm signal to the dispatch center, and the emergency power supply will be forced to cut off. The earthquake emergency response system will continue to monitor the follow-up ground motion acceleration. The system provides the operation scheduling center with a basis for train operation control to resume operation after stopping. The monitoring result of the system reduces the disaster, and the secondary disaster is caused by the earthquake. This paper improves the HSR response mechanism in detecting earthquake disasters. The result improves the ability of HSR to deal with earthquake disasters, and reduces casualties and economic and property loss caused by earthquake disasters.展开更多
Safety is one of the most critical themes in any large-scale railway construction project.Recognizing the importance of safety in railway engineering,practitioners and researchers have proposed various standards and p...Safety is one of the most critical themes in any large-scale railway construction project.Recognizing the importance of safety in railway engineering,practitioners and researchers have proposed various standards and procedures to ensure safety in construction activities.In this study,we first review four critical research areas of risk warning technologies and emergency response mechanisms in railway construction,namely,(i)risk identification methods of large-scale railway construction projects,(ii)risk management of large-scale railway construction,(iii)emergency response planning and management,and(iv)emergency response and rescue mechanisms.After reviewing the existing studies,we present four corresponding research areas and recommendations on the Sichuan-Tibet Railway construction.This study aims to inject new significant theoretical elements into the decision-making process and construction of this railway project in China.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No.51178157)the High-Level Project of the Top Six Talents of Jiangsu Province (Grant No.JXQC-021)the Key Science and Technology Program of Henan Province (Grant No.182102310004)。
文摘This paper studies the Least Square Method to define high-speed railway(HSR) earthquake risk and solve the problem of its emergency response mechanism. Based on the construction of a monitoring system for HSR earthquake emergency response, the technical operational procedures for HSR seismic emergency response are proposed. The quantity, scale, and location of HSR earthquake emergency response mechanism are defined, and the corresponding emergency response system is built. In particular, the earthquake emergency response system can conduct real-time continuous dynamic monitoring of seismic activity along the railway. When earthquake occurs, the intensity of the ground motion is detected by the system. When the earthquake monitoring value reaches the earthquake alarm threshold, it will send an alarm signal to the dispatch center, and the emergency power supply will be forced to cut off. The earthquake emergency response system will continue to monitor the follow-up ground motion acceleration. The system provides the operation scheduling center with a basis for train operation control to resume operation after stopping. The monitoring result of the system reduces the disaster, and the secondary disaster is caused by the earthquake. This paper improves the HSR response mechanism in detecting earthquake disasters. The result improves the ability of HSR to deal with earthquake disasters, and reduces casualties and economic and property loss caused by earthquake disasters.
基金This study was supported by the National Natural Science Foundation of China(Grant No.71942006)the Fundamental Research Funds for the Central Universities(2019RC053).
文摘Safety is one of the most critical themes in any large-scale railway construction project.Recognizing the importance of safety in railway engineering,practitioners and researchers have proposed various standards and procedures to ensure safety in construction activities.In this study,we first review four critical research areas of risk warning technologies and emergency response mechanisms in railway construction,namely,(i)risk identification methods of large-scale railway construction projects,(ii)risk management of large-scale railway construction,(iii)emergency response planning and management,and(iv)emergency response and rescue mechanisms.After reviewing the existing studies,we present four corresponding research areas and recommendations on the Sichuan-Tibet Railway construction.This study aims to inject new significant theoretical elements into the decision-making process and construction of this railway project in China.