Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct...Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.展开更多
As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst...As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst the global transition towards cleaner forms of energy,countries all around the world are vigorously developing PV technology.展开更多
Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging ...Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.展开更多
China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exi...China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities.展开更多
Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research ob...Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern.展开更多
Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties...Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.展开更多
BACKGROUND Colorectal polyps(CPs)are frequently occurring abnormal growths in the colorectum,and are a primary precursor of colorectal cancer(CRC).The triglyceride-glucose(TyG)index is a novel marker that assesses met...BACKGROUND Colorectal polyps(CPs)are frequently occurring abnormal growths in the colorectum,and are a primary precursor of colorectal cancer(CRC).The triglyceride-glucose(TyG)index is a novel marker that assesses metabolic health and insulin resistance,and has been linked to gastrointestinal cancers.AIM To investigate the potential association between the TyG index and CPs,as the relation between them has not been documented.METHODS A total of 2537 persons undergoing a routine health physical examination and colonoscopy at The First People's Hospital of Kunshan,Jiangsu Province,China,between January 2020 and December 2022 were included in this retrospective cross-sectional study.After excluding individuals who did not meet the eligibility criteria,descriptive statistics were used to compare characteristics between patients with and without CPs.Logistic regression analyses were conducted to determine the associations between the TyG index and the prevalence of CPs.The TyG index was calculated using the following formula:Ln[triglyceride(mg/dL)×glucose(mg/dL)/2].The presence and types of CPs was determined based on data from colonoscopy reports and pathology reports.RESULTS A nonlinear relation between the TyG index and the prevalence of CPs was identified,and exhibited a curvilinear pattern with a cut-off point of 2.31.A significant association was observed before the turning point,with an odds ratio(95% confidence interval)of 1.70(1.40,2.06),P<0.0001.However,the association between the TyG index and CPs was not significant after the cut-off point,with an odds ratio(95% confidence interval)of 0.57(0.27,1.23),P=0.1521.CONCLUSION Our study revealed a curvilinear association between the TyG index and CPs in Chinese individuals,suggesting its potential utility in developing colonoscopy screening strategies for preventing CRC.展开更多
China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the ...China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies.展开更多
Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing tech...Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside.展开更多
Objective This study aimed to explore the relationships between residential greenness and cardiometabolic risk factors among rural adults in Xinjiang Uygur Autonomous Region(Xinjiang)and thus provide a theoretical bas...Objective This study aimed to explore the relationships between residential greenness and cardiometabolic risk factors among rural adults in Xinjiang Uygur Autonomous Region(Xinjiang)and thus provide a theoretical basis and data support for improving the health of residents in this region.Methods We recruited 9,723 adult rural residents from the 51st Regiment of the Third Division of the Xinjiang Production and Construction Corps in September 2016.The normalized difference vegetation index(NDVI)was used to estimate residential greenness.The generalized linear mixed model(GLMM)was used to examine the association between residential greenness and cardiometabolic risk factors.Results Higher residential greenness was associated with lower cardiometabolic risk factor prevalence.After adjustments were made for age,sex,education,and marital status,for each interquartile range(IQR)increase of NDVI500-m,the risk of hypertension was reduced by 10.3%(OR=0.897,95%CI=0.836-0.962),the risk of obesity by 20.5%(OR=0.795,95%CI=0.695-0.910),the risk of type 2 diabetes by 15.1%(OR=0.849,95%CI=0.740-0.974),and the risk of dyslipidemia by 10.5%(OR=0.895,95%CI=0.825-0.971).Risk factor aggregation was reduced by 20.4%(OR=0.796,95%CI=0.716-0.885)for the same.Stratified analysis showed that NDVI500-m was associated more strongly with hypertension,dyslipidemia,and risk factor aggregation among male participants.The association of NDVI500-m with type 2 diabetes was stronger among participants with a higher education level.PM10 and physical activity mediated 1.9%-9.2%of the associations between NDVI500-m and obesity,dyslipidemia,and risk factor aggregation.Conclusion Higher residential greenness has a protective effect against cardiometabolic risk factors among rural residents in Xinjiang.Increasing the area of green space around residences is an effective measure to reduce the burden of cardiometabolic-related diseases among rural residents in Xinjiang.展开更多
Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction...Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique.展开更多
Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bo...Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.展开更多
A dual-route optical emission spectroscopy(D-OES)diagnostic is newly developed to monitor the optical emission from the X-point plasma region on the HL-2 A tokamak.This diagnostic is composed of an imaging system,a be...A dual-route optical emission spectroscopy(D-OES)diagnostic is newly developed to monitor the optical emission from the X-point plasma region on the HL-2 A tokamak.This diagnostic is composed of an imaging system,a beam-splitting system for dual-route measurements,fiber bundles,a spectrometer system,and a control and acquisition system.One route is used to obtain wide-spectral-range spectra,and the other route is used to acquire high-wavelengthresolution line shapes.The spectral resolution of the wide-range spectrometers is 0.8 nm with a coverage of 800 nm(@200-1000 nm).The spectral resolution of the high-resolution spectrometer is 0.01 nm with a coverage of 6 nm(@200-660 nm).The spatial resolution of each route of D-OES is about 4 cm with 11 channels.The temporal resolution is 16 ms at maximum in the single-channel mode.Wide-range spectra(containing Balmer series and a Fulcher band)and highly resolved Ha line shapes are obtained by D-OES in the hydrogen glow discharge in the lab.D-OES measurements are carried out in the high-density deuterium experiments of HL-2A.The electron density n_(e)and deuterium temperature T_(D) in the X-point multifaceted asymmetric radiation from the edge(MARFE)region are derived simultaneously by fitting the measured D_(a) shape.The density n_(e)is observed to increase from~8.7×10^(18)m^(-3)to~7.8×10^(19)m^(-3),and the temperature T_(D)drops from~14.4 eV to~2.3 eV after the onset of MARFE in the discharge#38260.展开更多
In aquaculture,co-culturing rice with fish may mitigate greenhouse-gas emissions.In this study,co-culture of four rice cultivars in a laboratory-scale rice–fish system reduced CH_(4)and N_(2)O emissions relative to f...In aquaculture,co-culturing rice with fish may mitigate greenhouse-gas emissions.In this study,co-culture of four rice cultivars in a laboratory-scale rice–fish system reduced CH_(4)and N_(2)O emissions relative to fish monoculture.Differences in CH_(4)and N_(2)O emissions among rice cultivars primarily stem from the differential effects of rice plants on plant-mediated CH_(4)transport,CH_(4)oxidation and nitrogen absorption.展开更多
This study investigates the use of waste fat biodiesel(WFB)from the leather industry as a substitute for diesel fuel.Specifically,it examines the diesel engine performance of WFB,a blend of WFB and diesel(B50),and dif...This study investigates the use of waste fat biodiesel(WFB)from the leather industry as a substitute for diesel fuel.Specifically,it examines the diesel engine performance of WFB,a blend of WFB and diesel(B50),and different blends of WFB and silicon dioxide(SiO_(2))nanoparticles(B50SiO_(2)40,B50SiO_(2)80,and B50SiO_(2)120μg/g).The results indicate that the B50SiO_(2)120 blend increases brake thermal efficiency by 10.03%compared to pure biodiesel but falls 1.93%short of neat diesel.Furthermore,the B50SiO_(2)120 mixture reduces smoke,hydrocarbon,and carbon monoxide emissions by 31.87%,34.14%,and 43.97%respectively,compared to diesel.However,the B50SiO_(2)120 blend shows a 4.91%increase in nitrogen oxide emissions compared to diesel.展开更多
3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational acc...3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.展开更多
As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the clas...As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the classic instantaneous traffic emission model and the limited deceleration capacity microscopic traffic flow model with slow-to-start rules, this paper has investigated the impact of speed humps on traffic flow and the instantaneous emissions of vehicle pollutants in a single lane situation. The numerical simulation results have shown that speed humps have significant effects on traffic flow and traffic emissions. In a free-flow region, the increase of speed humps leads to the continuous rise of CO_(2), NO_(X) and PM emissions. Within some density ranges, one finds that these pollutant emissions can evolve into some higher values under some random seeds. Under other random seeds, they can evolve into some lower values. In a wide moving jam region, the emission values of these pollutants sometimes appear as continuous or intermittent phenomenon. Compared to the refined Na Sch model, the present model has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher volatile organic components(VOC) emissions. Compared to the limited deceleration capacity model without slow-to-start rules, the present model also has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher VOC emissions in a wide moving jam region. These results can also be confirmed or explained by the statistical values of vehicle velocity and acceleration.展开更多
Dyslipidemia is a disorder where abnormally lipid concentrations circulate in the bloodstream. The disorder is common in type 2 diabetics (T2D) and is linked with T2D comorbidities, particularly cardiovascular disease...Dyslipidemia is a disorder where abnormally lipid concentrations circulate in the bloodstream. The disorder is common in type 2 diabetics (T2D) and is linked with T2D comorbidities, particularly cardiovascular disease. Dyslipidemia in T2D is typically characterized by elevated plasma triglyceride and low high-density lipoprotein cholesterol (HDL-C) levels. There is a significant gap in the literature regarding dyslipidemia in rural parts of Africa, where lipid profiles may not be captured through routine surveillance. This study aimed to characterize the prevalence and demo-graphic profile of dyslipidemia in T2D in the rural community of Ganadougou, Mali. We performed a cross-sectional study of 104 subjects with T2D in Ganadougou between November 2021 and March 2022. Demographic and lipid profiles were collected through cross-sectional surveys and serological analyses. The overall prevalence of dyslipidemia in T2D patients was 87.5% (91/104), which did not differ by sex (P = .368). High low-density lipoprotein cholesterol (LDL-C) was the most common lipid abnormality (78.9%, [82/104]). Dyslipidemia was associated with age and hypertension status (P = .013 and.036, respectively). High total and high LDL-C parameters were significantly associated with hypertension (P = .029 and .006, respectively). In low-resource settings such as rural Mali, there is a critical need to improve infrastructure for routine dyslipidemia screening to guide its prevention and intervention approaches. The high rates of dyslipidemia observed in Gandadougou, consistent with concomitant increases in cardiovascular diseases in Africa suggest that lipid profile assessments should be incorporated into routine medical care for T2D patients in African rural settings.展开更多
Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-bas...Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-based QDs.However,enormous attention has been paid to how to narrow their broadband spectra,ignoring the application advantages of the broadband emission.In this work,the AIGS QDs with controllable broad green-red dual-emission are first reported,which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crystals.Resultantly,the AIGS QDs exhibit broad dual-emission at green-and red-band evidenced by photoluminescence(PL)spectra,and the PL relative intensity and peak position can be finely adjusted.Furthermore,the dual-emission is the intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temperature-dependent PL spectra.Accordingly,the AIGS QDs(the size consists of 17 nm and 3.7 nm)with 530 nm and 630 nm emission could successfully be synthesized at 220°C.By combining the blue light-emitting diode(LED)chips and dual-emission AIGS QDs,the constructed white light-emitting devices(WLEDs)exhibit a continuous and broad spectrum like natural sunlight with the Commission Internationale de l’Eclairage(CIE)chromaticity coordinates of(0.33,0.31),a correlated color temperature(CCT)of 5425 K,color rendering index(CRI)of 90,and luminous efficacy of radiation(LER)of 129 lm/W,which indicates that the AIGS QDs have huge potential for lighting applications.展开更多
The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the c...The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the commercialization of perovskite solar cells(PSCs).To address this issue,this paper proposes an innovative multifunctional interface modulation strategy by introducing aggregation-induced emission(AIE)molecule 5-[4-[1,2,2-tri[4-(3,5-dicarboxyphenyl)phenyl]ethylene]phenyl]benzene-1,3-dicarboxylic acid(H_(8)ETTB)at the SnO_(2)ETL/perovskite interface.Firstly,the interaction of H_(8)ETTB with the SnO_(2)surface,facilitated by its carboxyl groups,is effective in passivating surface defects caused by noncoord inated Sn and O vacancies.This interaction enhances the conductivity of the SnO_(2)film and adjusts energy levels,leading to enhanced charge carrier transport.Simultaneously,H_(8)ETTB can passivate noncoord inated Pb^(2+)ions at the perovskite interface,promoting perovskite crystallization and reducing the interface energy barrier,resulting in a perovskite film with low defects and high crystalline quality.More importantly,the H_(8)ETTB molecule,can convert UV light into light absorbable by the perovskite,thereby reducing damage caused by UV light and improving the device's utilization of UV.Consequently,the champion PSC based on SnO_(2)-H_(8)ETTB achieves an impressing efficiency of 23.32%and significantly improved photostability compared with the control device after continuous exposure to intense UV radiation.In addition,the Cs_(0.05)(FA_(0.95)MA_(0.05))_(0.95)Pb(I_(0.95)Br_(0.05))_(3)based device can achieve maximum efficiency of 24.01%,demonstrating the effectiveness and universality of this strategy.Overall,this innovative interface bridging strategy effectively tackles interface defects and low UV light utilization in PSCs,presenting a promising approach for achieving highly efficient and stable PSCs.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52001088,52271269,U1906233)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2021E050)+2 种基金the State Key Laboratory of Ocean Engineering(Grant No.GKZD010084)Liaoning Province’s Xing Liao Talents Program(Grant No.XLYC2002108)Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents(Grant No.2021RD16)。
文摘Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.
文摘As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst the global transition towards cleaner forms of energy,countries all around the world are vigorously developing PV technology.
基金supported by the National Natural Science Foundation of China(NNSFC)grants 42074202,42274196Strategic Priority Research Program of Chinese Academy of Sciences grant XDB41000000ISSI-BJ International Team Interaction between magnetic reconnection and turbulence:From the Sun to the Earth。
文摘Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered.
基金Under the auspices of the Philosophy and Social Science Planning Project of Guizhou,China(No.21GZZD59)。
文摘China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities.
基金Under the auspices of National Natural Science Foundation of China(No.42171230)。
文摘Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern.
基金National Natural Science Foundation of China (No. 52204101)Natural Science Foundation of Shandong Province (No. ZR2022QE137)Open Project of State Key Laboratory for Geomechanics and Deep Underground Engineering in CUMTB (No. SKLGDUEK2023).
文摘Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.
基金Supported by Suzhou Municipal Science and Technology Program of China,No.SKJY2021012.
文摘BACKGROUND Colorectal polyps(CPs)are frequently occurring abnormal growths in the colorectum,and are a primary precursor of colorectal cancer(CRC).The triglyceride-glucose(TyG)index is a novel marker that assesses metabolic health and insulin resistance,and has been linked to gastrointestinal cancers.AIM To investigate the potential association between the TyG index and CPs,as the relation between them has not been documented.METHODS A total of 2537 persons undergoing a routine health physical examination and colonoscopy at The First People's Hospital of Kunshan,Jiangsu Province,China,between January 2020 and December 2022 were included in this retrospective cross-sectional study.After excluding individuals who did not meet the eligibility criteria,descriptive statistics were used to compare characteristics between patients with and without CPs.Logistic regression analyses were conducted to determine the associations between the TyG index and the prevalence of CPs.The TyG index was calculated using the following formula:Ln[triglyceride(mg/dL)×glucose(mg/dL)/2].The presence and types of CPs was determined based on data from colonoscopy reports and pathology reports.RESULTS A nonlinear relation between the TyG index and the prevalence of CPs was identified,and exhibited a curvilinear pattern with a cut-off point of 2.31.A significant association was observed before the turning point,with an odds ratio(95% confidence interval)of 1.70(1.40,2.06),P<0.0001.However,the association between the TyG index and CPs was not significant after the cut-off point,with an odds ratio(95% confidence interval)of 0.57(0.27,1.23),P=0.1521.CONCLUSION Our study revealed a curvilinear association between the TyG index and CPs in Chinese individuals,suggesting its potential utility in developing colonoscopy screening strategies for preventing CRC.
基金The authors acknowledge the financial support received from the National Natural Science Foundation of China(72061147002).
文摘China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies.
基金the European Research Council for starting grant 200141-QuESpace,with which the Vlasiator model was developedconsolidator grant 682068-PRESTISSIMO awarded for further development of Vlasiator and its use in scientific investigations+4 种基金Academy of Finland grant numbers 338629-AERGELC’H,339756-KIMCHI,336805-FORESAIL,and 335554-ICT-SUNVACThe Academy of Finland also supported this work through the PROFI4 grant(grant number 3189131)support from the NASA grants,80NSSC20K1670 and 80MSFC20C0019the NASA GSFC FY23 IRADHIF funds。
文摘Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside.
基金funded by the Science and Technology Project of the Xinjiang Production and Construction Corps(NO.2021AB030)the Innovative Development Project of Shihezi University(NO.CXFZ202005)the Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences(2020-PT330-003).
文摘Objective This study aimed to explore the relationships between residential greenness and cardiometabolic risk factors among rural adults in Xinjiang Uygur Autonomous Region(Xinjiang)and thus provide a theoretical basis and data support for improving the health of residents in this region.Methods We recruited 9,723 adult rural residents from the 51st Regiment of the Third Division of the Xinjiang Production and Construction Corps in September 2016.The normalized difference vegetation index(NDVI)was used to estimate residential greenness.The generalized linear mixed model(GLMM)was used to examine the association between residential greenness and cardiometabolic risk factors.Results Higher residential greenness was associated with lower cardiometabolic risk factor prevalence.After adjustments were made for age,sex,education,and marital status,for each interquartile range(IQR)increase of NDVI500-m,the risk of hypertension was reduced by 10.3%(OR=0.897,95%CI=0.836-0.962),the risk of obesity by 20.5%(OR=0.795,95%CI=0.695-0.910),the risk of type 2 diabetes by 15.1%(OR=0.849,95%CI=0.740-0.974),and the risk of dyslipidemia by 10.5%(OR=0.895,95%CI=0.825-0.971).Risk factor aggregation was reduced by 20.4%(OR=0.796,95%CI=0.716-0.885)for the same.Stratified analysis showed that NDVI500-m was associated more strongly with hypertension,dyslipidemia,and risk factor aggregation among male participants.The association of NDVI500-m with type 2 diabetes was stronger among participants with a higher education level.PM10 and physical activity mediated 1.9%-9.2%of the associations between NDVI500-m and obesity,dyslipidemia,and risk factor aggregation.Conclusion Higher residential greenness has a protective effect against cardiometabolic risk factors among rural residents in Xinjiang.Increasing the area of green space around residences is an effective measure to reduce the burden of cardiometabolic-related diseases among rural residents in Xinjiang.
基金supported in part by the China Postdoctoral Science Foundation (No. 2020M673341)in part by the Natural Science Basic Research Program of Shaanxi (No.2023-JC-YB-549)+1 种基金in part by National Natural Science Foundation of China (Nos. 62371375 and 62371372)Innovation Capability Support Program of Shaanxi (No. 2022TD-37)。
文摘Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique.
基金Project supported by the China Scholarship Council(Grant No.201906130092)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY223065)the Natural Science Foundation of Sichuan Province(Grant No.2023NSFSC1330).
文摘Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.
基金supported by the National MCF Energy R&D Program of China(Nos.2018YFE0301102,2022YFE03100004 and 2018YFE 0303102)National Natural Science Foundation of China(Nos.12375210 and 12305238)the Sichuan Natural Science Foundation(Nos.2022NSFSC1791,2022JDRC0014 and 2022TFQCCXTD)。
文摘A dual-route optical emission spectroscopy(D-OES)diagnostic is newly developed to monitor the optical emission from the X-point plasma region on the HL-2 A tokamak.This diagnostic is composed of an imaging system,a beam-splitting system for dual-route measurements,fiber bundles,a spectrometer system,and a control and acquisition system.One route is used to obtain wide-spectral-range spectra,and the other route is used to acquire high-wavelengthresolution line shapes.The spectral resolution of the wide-range spectrometers is 0.8 nm with a coverage of 800 nm(@200-1000 nm).The spectral resolution of the high-resolution spectrometer is 0.01 nm with a coverage of 6 nm(@200-660 nm).The spatial resolution of each route of D-OES is about 4 cm with 11 channels.The temporal resolution is 16 ms at maximum in the single-channel mode.Wide-range spectra(containing Balmer series and a Fulcher band)and highly resolved Ha line shapes are obtained by D-OES in the hydrogen glow discharge in the lab.D-OES measurements are carried out in the high-density deuterium experiments of HL-2A.The electron density n_(e)and deuterium temperature T_(D) in the X-point multifaceted asymmetric radiation from the edge(MARFE)region are derived simultaneously by fitting the measured D_(a) shape.The density n_(e)is observed to increase from~8.7×10^(18)m^(-3)to~7.8×10^(19)m^(-3),and the temperature T_(D)drops from~14.4 eV to~2.3 eV after the onset of MARFE in the discharge#38260.
基金supported by the National Natural Science Foundation of China(42177455)“Pioneer”and“Leading Goose”R&D Program of Zhejiang(2022C02008 and 2022C02058)+1 种基金Central Public-interest Scientific Institution Basal Research Fund(CPSIBRF-CNRRI-202305)the Agricultural Science and Technology Innovation Program(ASTIP)。
文摘In aquaculture,co-culturing rice with fish may mitigate greenhouse-gas emissions.In this study,co-culture of four rice cultivars in a laboratory-scale rice–fish system reduced CH_(4)and N_(2)O emissions relative to fish monoculture.Differences in CH_(4)and N_(2)O emissions among rice cultivars primarily stem from the differential effects of rice plants on plant-mediated CH_(4)transport,CH_(4)oxidation and nitrogen absorption.
文摘This study investigates the use of waste fat biodiesel(WFB)from the leather industry as a substitute for diesel fuel.Specifically,it examines the diesel engine performance of WFB,a blend of WFB and diesel(B50),and different blends of WFB and silicon dioxide(SiO_(2))nanoparticles(B50SiO_(2)40,B50SiO_(2)80,and B50SiO_(2)120μg/g).The results indicate that the B50SiO_(2)120 blend increases brake thermal efficiency by 10.03%compared to pure biodiesel but falls 1.93%short of neat diesel.Furthermore,the B50SiO_(2)120 mixture reduces smoke,hydrocarbon,and carbon monoxide emissions by 31.87%,34.14%,and 43.97%respectively,compared to diesel.However,the B50SiO_(2)120 blend shows a 4.91%increase in nitrogen oxide emissions compared to diesel.
基金the National Natural Science Foundation of China(Nos.52005244,U20A20275)the Natural Science Foundation of Hunan Province,China(Nos.2021JJ30573,2023JJ60193)the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China(No.31715011)。
文摘3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.
基金funded by the National Natural Science Foundation of China (Grant No. 11875031)the key research projects of Natural Science of Anhui Provincial Colleges and Universities (Grant No. 2022AH050252)。
文摘As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the classic instantaneous traffic emission model and the limited deceleration capacity microscopic traffic flow model with slow-to-start rules, this paper has investigated the impact of speed humps on traffic flow and the instantaneous emissions of vehicle pollutants in a single lane situation. The numerical simulation results have shown that speed humps have significant effects on traffic flow and traffic emissions. In a free-flow region, the increase of speed humps leads to the continuous rise of CO_(2), NO_(X) and PM emissions. Within some density ranges, one finds that these pollutant emissions can evolve into some higher values under some random seeds. Under other random seeds, they can evolve into some lower values. In a wide moving jam region, the emission values of these pollutants sometimes appear as continuous or intermittent phenomenon. Compared to the refined Na Sch model, the present model has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher volatile organic components(VOC) emissions. Compared to the limited deceleration capacity model without slow-to-start rules, the present model also has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher VOC emissions in a wide moving jam region. These results can also be confirmed or explained by the statistical values of vehicle velocity and acceleration.
文摘Dyslipidemia is a disorder where abnormally lipid concentrations circulate in the bloodstream. The disorder is common in type 2 diabetics (T2D) and is linked with T2D comorbidities, particularly cardiovascular disease. Dyslipidemia in T2D is typically characterized by elevated plasma triglyceride and low high-density lipoprotein cholesterol (HDL-C) levels. There is a significant gap in the literature regarding dyslipidemia in rural parts of Africa, where lipid profiles may not be captured through routine surveillance. This study aimed to characterize the prevalence and demo-graphic profile of dyslipidemia in T2D in the rural community of Ganadougou, Mali. We performed a cross-sectional study of 104 subjects with T2D in Ganadougou between November 2021 and March 2022. Demographic and lipid profiles were collected through cross-sectional surveys and serological analyses. The overall prevalence of dyslipidemia in T2D patients was 87.5% (91/104), which did not differ by sex (P = .368). High low-density lipoprotein cholesterol (LDL-C) was the most common lipid abnormality (78.9%, [82/104]). Dyslipidemia was associated with age and hypertension status (P = .013 and.036, respectively). High total and high LDL-C parameters were significantly associated with hypertension (P = .029 and .006, respectively). In low-resource settings such as rural Mali, there is a critical need to improve infrastructure for routine dyslipidemia screening to guide its prevention and intervention approaches. The high rates of dyslipidemia observed in Gandadougou, consistent with concomitant increases in cardiovascular diseases in Africa suggest that lipid profile assessments should be incorporated into routine medical care for T2D patients in African rural settings.
基金supported by National Natural Science Foundation of China(Grant Nos.52272166,22205214,and 12204427).
文摘Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-based QDs.However,enormous attention has been paid to how to narrow their broadband spectra,ignoring the application advantages of the broadband emission.In this work,the AIGS QDs with controllable broad green-red dual-emission are first reported,which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crystals.Resultantly,the AIGS QDs exhibit broad dual-emission at green-and red-band evidenced by photoluminescence(PL)spectra,and the PL relative intensity and peak position can be finely adjusted.Furthermore,the dual-emission is the intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temperature-dependent PL spectra.Accordingly,the AIGS QDs(the size consists of 17 nm and 3.7 nm)with 530 nm and 630 nm emission could successfully be synthesized at 220°C.By combining the blue light-emitting diode(LED)chips and dual-emission AIGS QDs,the constructed white light-emitting devices(WLEDs)exhibit a continuous and broad spectrum like natural sunlight with the Commission Internationale de l’Eclairage(CIE)chromaticity coordinates of(0.33,0.31),a correlated color temperature(CCT)of 5425 K,color rendering index(CRI)of 90,and luminous efficacy of radiation(LER)of 129 lm/W,which indicates that the AIGS QDs have huge potential for lighting applications.
基金finically supported by the National Natural Science Foundation of China(62350054,12374379,12174152,12304462)the Foundation of National Key Laboratory(***202302011)。
文摘The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the commercialization of perovskite solar cells(PSCs).To address this issue,this paper proposes an innovative multifunctional interface modulation strategy by introducing aggregation-induced emission(AIE)molecule 5-[4-[1,2,2-tri[4-(3,5-dicarboxyphenyl)phenyl]ethylene]phenyl]benzene-1,3-dicarboxylic acid(H_(8)ETTB)at the SnO_(2)ETL/perovskite interface.Firstly,the interaction of H_(8)ETTB with the SnO_(2)surface,facilitated by its carboxyl groups,is effective in passivating surface defects caused by noncoord inated Sn and O vacancies.This interaction enhances the conductivity of the SnO_(2)film and adjusts energy levels,leading to enhanced charge carrier transport.Simultaneously,H_(8)ETTB can passivate noncoord inated Pb^(2+)ions at the perovskite interface,promoting perovskite crystallization and reducing the interface energy barrier,resulting in a perovskite film with low defects and high crystalline quality.More importantly,the H_(8)ETTB molecule,can convert UV light into light absorbable by the perovskite,thereby reducing damage caused by UV light and improving the device's utilization of UV.Consequently,the champion PSC based on SnO_(2)-H_(8)ETTB achieves an impressing efficiency of 23.32%and significantly improved photostability compared with the control device after continuous exposure to intense UV radiation.In addition,the Cs_(0.05)(FA_(0.95)MA_(0.05))_(0.95)Pb(I_(0.95)Br_(0.05))_(3)based device can achieve maximum efficiency of 24.01%,demonstrating the effectiveness and universality of this strategy.Overall,this innovative interface bridging strategy effectively tackles interface defects and low UV light utilization in PSCs,presenting a promising approach for achieving highly efficient and stable PSCs.