The national Air Pollution Prevention and Control Action Plan required significant decreases in PM_(2.5) levels over China.To explore more effective emission abatement strategies in industrial cities,a case study wa...The national Air Pollution Prevention and Control Action Plan required significant decreases in PM_(2.5) levels over China.To explore more effective emission abatement strategies in industrial cities,a case study was conducted in Baotou to evaluate the current national control measures.The total emissions of SO_2,NO_X,PM_(2.5) and NMVOC(non-methane volatile organic compounds) in Baotou were 211.2 Gg,156.1 Gg,28.8 Gg,and 48.5 Gg,respectively in 2013,and they would experience a reduction of 30.4%,26.6%,15.1%,and 8.7%,respectively in 2017 and 39.0%,32.0%,24.4%,and 12.9%,respectively in2020.The SO_2,NO_Xand PM_(2.5) emissions from the industrial sector would experience a greater decrease,with reductions of 37%,32.7 and 24.3%,respectively.From 2013 to 2020,the concentrations of SO_2,NO_2,and PM_(2.5) are expected to decline by approximately 30%,10% and 14.5%,respectively.The reduction rate of SNA(sulfate,nitrate and ammonium)concentrations was significantly higher than that of PM_(2.5) in 2017,implying that the current key strategy toward controlling air pollutants from the industrial sector is more powerful for SNA.Although air pollution control measures implemented in the industrial sector could greatly reduce total emissions,constraining the emissions from lower sources such as residential coal combustion would be more effective in decreasing the concentration of PM_(2.5) from 2017 to 2020.These results suggest that even for a typical industrial city,the reduction of PM_(2.5) concentrations not only requires decreases in emissions from the industrial sector,but also from the low emission sources.The seasonal variation in sulfate concentration also showed that emission from coal-burning is the key factor to control during the heating season.展开更多
A deterministic linear programming model which optimizes the abatement of each SO2 emission source, is extended into a CCP form by introducing equations of probabilistic constrained through the incorporation of uncert...A deterministic linear programming model which optimizes the abatement of each SO2 emission source, is extended into a CCP form by introducing equations of probabilistic constrained through the incorporation of uncertainty in the source-receptor-specific transfer coefficients. Based on the calculation of SO2 and sulfate average residence time for Liuzhou City, a sulfur deposition model has been developed and the distribution of transfer coefficients have been found to be approximately log-normal. Sulfur removal minimization of the model shows that the abatement of emission sources in the city is more effective, while control cost optimization provides the lowest cost programmes for source abatement at each allowable deposition limit under varied environmental risk levels. Finally a practicable programme is recommended.展开更多
Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate ...Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate greenhouse gas control roadmaps.The forecasting method of this paper is consistent with the published national inventory in terms of caliber.Based on the N_2 O abatement technical parameters of adipic acid and the production trend,this paper combines the scenario analysis and provides a measurement of comprehensive N_2 O abatement effect of the entire industry in China.Four future scenarios are assumed.The baseline scenario(BAUS) is a frozen scenario.Three emission abatement scenarios(ANAS,SNAS,and ENAS) are assumed under different strength of abatement driving parameters.The results show that China's adipic acid production process can achieve increasingly significant N_2 O emission abatement effects.Compared to the baseline scenario,by 2030,the N_2 O emission abatements of the three emission abatement scenarios can reach 207-399 kt and the emission abatement ratios can reach 32.5%-62.6%.By 2050,the N_2 O emission abatements for the three emission abatement scenarios can reach 387-540 kt and the emission abatement ratios can reach 71.4%-99.6%.展开更多
As part of its efforts to promote a sustainable and high-quality development,China has pledged to reduce water consumption and create a water-efficient society.On the basis of identifying the institutional root causes...As part of its efforts to promote a sustainable and high-quality development,China has pledged to reduce water consumption and create a water-efficient society.On the basis of identifying the institutional root causes of excessive capital allocation and excessive water consumption in China’s water-intensive industrial sectors,this study elaborates how the national water-efficient cities assessment contributes to optimized capital allocation.Our research shows that national water-efficient cities assessment has motivated local governments to compete for water efficiency.To conserve water,local governments regulated the entry and exit of water-intensive enterprises,discouraged excessive investments in water-intensive sectors,and phased out obsolete water-intensive capacities within their jurisdictions.This approach has resulted in mutually beneficial outcomes,including improved allocation of capital,enhanced water efficiency,and reduced emissions.This paper offers policy recommendations for establishing a water-efficient society throughout the 14^(th) Five-Year Plan(2021-2025)period by presenting empirical evidence on the policy effects of resource efficiency evaluation.展开更多
Intrinsic data of N2O catalytic decomposition over a K-promoted Co-Mn-Al mixed oxide prepared by the thermal treatment of a layered double hydroxide was used for the design of a pilot reactor for the abatement of N2O ...Intrinsic data of N2O catalytic decomposition over a K-promoted Co-Mn-Al mixed oxide prepared by the thermal treatment of a layered double hydroxide was used for the design of a pilot reactor for the abatement of N2O emissions from the off-gases in HNO3 production.A pseudo-homogeneous one-dimensional model of an ideal plug flow reactor under an isothermal regime(450°C)was used for reactor design.A catalyst particle diameter of 3 mm is a compromise size because increasing the size of the catalyst particle leads to a decrease in the reaction rate because of an internal diffusion limitation,and particles with a smaller diameter cause a large pressure drop.A catalyst bed of 11.5 m 3 was estimated for the target N2O conversion of 90%upon the treatment of 30000 m 3 /h of exhaust gas(0.1 mol%N2O,0.005 mol% NO,0.9 mol%H2O,5 mol%O2)at 450°C and 130 kPa.展开更多
Carbon emissions abatement(CEA)is an important issue that draws attention from both academicians and policymakers.Data envelopment analysis(DEA)has been a popular tool to allocate the CEA,and most previous works are b...Carbon emissions abatement(CEA)is an important issue that draws attention from both academicians and policymakers.Data envelopment analysis(DEA)has been a popular tool to allocate the CEA,and most previous works are based on radial DEA models.However,as shown in our paper,these models may give biased results due to their ignorance of slackness.To avoid such problems,we propose an allocation model based on the slack-based model and multiple-objective nonlinear programming to find the CEA allocation plan,which can minimize the GDP loss.The property of nonconvexity makes the model difficult to solve.Thus,we construct an approximation algorithm to solve this model with guaranteed error bounds and complexity.In the empirical application,we take regions of china as an illustrative example and find there is a significant region gap in China.Hence,we group the regions into eastern,central,and western,and give the main results,as well as the superiority of our allocation models compared with radial models.展开更多
Increasingly countries are seeking to reduce emission of greenhouse gases from the agricultural industries,and livestock production in particular,as part of their climate change management.While many reviews update pr...Increasingly countries are seeking to reduce emission of greenhouse gases from the agricultural industries,and livestock production in particular,as part of their climate change management.While many reviews update progress in mitigation research,a quantitative assessment of the efficacy and performance-consequences of nutritional strategies to mitigate enteric methane(CH_(4))emissions from ruminants has been lacking.A meta-analysis was conducted based on 108 refereed papers from recent animal studies(2000-2020)to report effects on CH4 production,CH_(4) yield and CH_(4) emission intensity from 8 dietary interventions.The interventions(oils,microalgae,nitrate,ionophores,protozoal control,phytochemicals,essential oils and 3-nitrooxypropanol).Of these,macroalgae and 3-nitrooxypropanol showed greatest efficacy in reducing CH_(4) yield(g CH_(4)/kg of dry matter intake)at the doses trialled.The confidence intervals derived for the mitigation efficacies could be applied to estimate the potential to reduce national livestock emissions through the implementation of these dietary interventions.展开更多
基金supported by the Special Scientific Research Fund of the Environmental Protection Commonwealth Section(Nos.201409003,201509020)
文摘The national Air Pollution Prevention and Control Action Plan required significant decreases in PM_(2.5) levels over China.To explore more effective emission abatement strategies in industrial cities,a case study was conducted in Baotou to evaluate the current national control measures.The total emissions of SO_2,NO_X,PM_(2.5) and NMVOC(non-methane volatile organic compounds) in Baotou were 211.2 Gg,156.1 Gg,28.8 Gg,and 48.5 Gg,respectively in 2013,and they would experience a reduction of 30.4%,26.6%,15.1%,and 8.7%,respectively in 2017 and 39.0%,32.0%,24.4%,and 12.9%,respectively in2020.The SO_2,NO_Xand PM_(2.5) emissions from the industrial sector would experience a greater decrease,with reductions of 37%,32.7 and 24.3%,respectively.From 2013 to 2020,the concentrations of SO_2,NO_2,and PM_(2.5) are expected to decline by approximately 30%,10% and 14.5%,respectively.The reduction rate of SNA(sulfate,nitrate and ammonium)concentrations was significantly higher than that of PM_(2.5) in 2017,implying that the current key strategy toward controlling air pollutants from the industrial sector is more powerful for SNA.Although air pollution control measures implemented in the industrial sector could greatly reduce total emissions,constraining the emissions from lower sources such as residential coal combustion would be more effective in decreasing the concentration of PM_(2.5) from 2017 to 2020.These results suggest that even for a typical industrial city,the reduction of PM_(2.5) concentrations not only requires decreases in emissions from the industrial sector,but also from the low emission sources.The seasonal variation in sulfate concentration also showed that emission from coal-burning is the key factor to control during the heating season.
文摘A deterministic linear programming model which optimizes the abatement of each SO2 emission source, is extended into a CCP form by introducing equations of probabilistic constrained through the incorporation of uncertainty in the source-receptor-specific transfer coefficients. Based on the calculation of SO2 and sulfate average residence time for Liuzhou City, a sulfur deposition model has been developed and the distribution of transfer coefficients have been found to be approximately log-normal. Sulfur removal minimization of the model shows that the abatement of emission sources in the city is more effective, while control cost optimization provides the lowest cost programmes for source abatement at each allowable deposition limit under varied environmental risk levels. Finally a practicable programme is recommended.
基金financial support by the Ministry of Science and Technology of China (Grant No.2018YFC1509006)the National Natural Science Foundation of China (Grant No.71874096)+1 种基金the Macao SAR Government Higher Education Fundthe Macao University of Science and Technology (Grant No.FRG-19-008-MSB)。
文摘Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate greenhouse gas control roadmaps.The forecasting method of this paper is consistent with the published national inventory in terms of caliber.Based on the N_2 O abatement technical parameters of adipic acid and the production trend,this paper combines the scenario analysis and provides a measurement of comprehensive N_2 O abatement effect of the entire industry in China.Four future scenarios are assumed.The baseline scenario(BAUS) is a frozen scenario.Three emission abatement scenarios(ANAS,SNAS,and ENAS) are assumed under different strength of abatement driving parameters.The results show that China's adipic acid production process can achieve increasingly significant N_2 O emission abatement effects.Compared to the baseline scenario,by 2030,the N_2 O emission abatements of the three emission abatement scenarios can reach 207-399 kt and the emission abatement ratios can reach 32.5%-62.6%.By 2050,the N_2 O emission abatements for the three emission abatement scenarios can reach 387-540 kt and the emission abatement ratios can reach 71.4%-99.6%.
基金Sponsorship of the Outstanding Youth Innovation Team Development Program for Institutes of Higher Learning in Shandong Province(2021RW008)the Youth Program of the Natural Science Foundation of Shandong Province(ZR2021QG048).
文摘As part of its efforts to promote a sustainable and high-quality development,China has pledged to reduce water consumption and create a water-efficient society.On the basis of identifying the institutional root causes of excessive capital allocation and excessive water consumption in China’s water-intensive industrial sectors,this study elaborates how the national water-efficient cities assessment contributes to optimized capital allocation.Our research shows that national water-efficient cities assessment has motivated local governments to compete for water efficiency.To conserve water,local governments regulated the entry and exit of water-intensive enterprises,discouraged excessive investments in water-intensive sectors,and phased out obsolete water-intensive capacities within their jurisdictions.This approach has resulted in mutually beneficial outcomes,including improved allocation of capital,enhanced water efficiency,and reduced emissions.This paper offers policy recommendations for establishing a water-efficient society throughout the 14^(th) Five-Year Plan(2021-2025)period by presenting empirical evidence on the policy effects of resource efficiency evaluation.
基金supported by the Czech Science Foundation(106/09/1664)the Ministry of Education,Youth and Sports of the CzechRepublic(NPV II 2B06068)
文摘Intrinsic data of N2O catalytic decomposition over a K-promoted Co-Mn-Al mixed oxide prepared by the thermal treatment of a layered double hydroxide was used for the design of a pilot reactor for the abatement of N2O emissions from the off-gases in HNO3 production.A pseudo-homogeneous one-dimensional model of an ideal plug flow reactor under an isothermal regime(450°C)was used for reactor design.A catalyst particle diameter of 3 mm is a compromise size because increasing the size of the catalyst particle leads to a decrease in the reaction rate because of an internal diffusion limitation,and particles with a smaller diameter cause a large pressure drop.A catalyst bed of 11.5 m 3 was estimated for the target N2O conversion of 90%upon the treatment of 30000 m 3 /h of exhaust gas(0.1 mol%N2O,0.005 mol% NO,0.9 mol%H2O,5 mol%O2)at 450°C and 130 kPa.
基金Key Laboratory of Management,Decision and Information Systems,Chinese Academy of Sciences.
文摘Carbon emissions abatement(CEA)is an important issue that draws attention from both academicians and policymakers.Data envelopment analysis(DEA)has been a popular tool to allocate the CEA,and most previous works are based on radial DEA models.However,as shown in our paper,these models may give biased results due to their ignorance of slackness.To avoid such problems,we propose an allocation model based on the slack-based model and multiple-objective nonlinear programming to find the CEA allocation plan,which can minimize the GDP loss.The property of nonconvexity makes the model difficult to solve.Thus,we construct an approximation algorithm to solve this model with guaranteed error bounds and complexity.In the empirical application,we take regions of china as an illustrative example and find there is a significant region gap in China.Hence,we group the regions into eastern,central,and western,and give the main results,as well as the superiority of our allocation models compared with radial models.
基金funded by the NSW Climate Change Fund through the NSW Primary Industries Climate Change Research Strategy。
文摘Increasingly countries are seeking to reduce emission of greenhouse gases from the agricultural industries,and livestock production in particular,as part of their climate change management.While many reviews update progress in mitigation research,a quantitative assessment of the efficacy and performance-consequences of nutritional strategies to mitigate enteric methane(CH_(4))emissions from ruminants has been lacking.A meta-analysis was conducted based on 108 refereed papers from recent animal studies(2000-2020)to report effects on CH4 production,CH_(4) yield and CH_(4) emission intensity from 8 dietary interventions.The interventions(oils,microalgae,nitrate,ionophores,protozoal control,phytochemicals,essential oils and 3-nitrooxypropanol).Of these,macroalgae and 3-nitrooxypropanol showed greatest efficacy in reducing CH_(4) yield(g CH_(4)/kg of dry matter intake)at the doses trialled.The confidence intervals derived for the mitigation efficacies could be applied to estimate the potential to reduce national livestock emissions through the implementation of these dietary interventions.