A comprehensive understanding of shale’s bedding anisotropy is crucial for shale-related engineering activities,such as hydraulic fracturing,drilling and underground excavation.In this study,seven Brazilian tests wer...A comprehensive understanding of shale’s bedding anisotropy is crucial for shale-related engineering activities,such as hydraulic fracturing,drilling and underground excavation.In this study,seven Brazilian tests were conducted on shale samples at different bedding orientations with respect to the loading direction(0°,45°and 90°)and the disc end face(0°,45°and 90°).An acoustic emission(AE)system was employed to capture the evolution of damage and the temporal-spatial distribution of microcracks under splitting-tensile stress.The results show that the Brazilian tensile strength decreases with increasing bedding inclination with respect to the disc end face,while it increases with the angle between bedding and loading directions.Increasing the bedding inclination with respect to the end face facilitates the reduction in b value and enhances the shale’s resistance to microcrack growth during the loading process.Misalignment between the bedding orientation and the end face suppresses the growth of mixed tensile-shear microcracks,while reducing the bedding angle relative to the loading direction is beneficial for creating mixed tensile-shear and tensile cracks.The observed microscopic failure characteristics are attributed to the competing effects of bedding activation and breakage of shale matrix at different bedding inclinations.The temporal-spatial distribution of microcracks,characterized by AE statistics including the correlation dimension and spatial correlation length,illustrates that the fractal evolution of microcracks is independent of bedding anisotropy,whereas the spatial distribution shows a stronger correlation.The evolution features of correlation dimension and spatial correlation length could be potentially used as precursors for shale splitting failure.These findings may be useful for predicting rock mass instability and analyzing the causes of catastrophic rupture.展开更多
The Five-hundred-meter Aperture Spherical radio Telescope(FAST) has the potential to discover many new pulsars and new phenomena. In this paper we mainly concentrate on how FAST can impact study of the pulsar emission...The Five-hundred-meter Aperture Spherical radio Telescope(FAST) has the potential to discover many new pulsars and new phenomena. In this paper we mainly concentrate on how FAST can impact study of the pulsar emission mechanism and magnetospheric dynamics. Several observational programs heading to this direction are reviewed. To make full use of the superior performance of FAST and maximize the scientific outcome, these programs can be arranged in different phases of FAST according to their demands for observational conditions. We suggest that programs can be performed following the test phase, which are observations of multifrequency mean pulse profiles, anomalous X-ray pulsars(AXPs)/soft gamma-ray repeaters(SGRs), mode changing, drifting subpulse and nulling. The long-term monitoring can be carried out for mode changing, AXPs/SGRs and precessional pulsars. Others programs, including polarization observations of radio and γ-ray pulsars, searching for weak pulse components, and multifrequency observations of subpulse drifting, microstructure and giant pulses, can be conducted in all the normal operating phases(the first and second phases). These programs will push forward the frontier in this field in different respects. The search for sub-millisecond pulsars and follow-up observations of their emission properties are very important projects for FAST, but they may be covered by other papers in this mini-volume; therefore,they are not discussed here.展开更多
The valence of element yttrium of Y 2O 3 Mo cathode material was studied by thermal analysis, X ray diffraction analysis, scanning electron microscopy and X ray photoelectron spectra, and the emission mechanism of Mo ...The valence of element yttrium of Y 2O 3 Mo cathode material was studied by thermal analysis, X ray diffraction analysis, scanning electron microscopy and X ray photoelectron spectra, and the emission mechanism of Mo Y 2O 3 cathode was discussed. It was proved that reaction between powder Y 2O 3 and Mo 2C can happen at 1 173 K, and Y 2O 3 be reduced to metallic yttrium. After the powder mixture of Y 2O 3 and Mo 2C is heat treated at 1 873 K, yttrium exists in two kinds of state—yttrium of zero valence and yttrium of three valences. The formation of monoatomic layer of metallic yttrium at the surface of filament is the cause of emissivity of the cathode. Yttrium at the surface doesn’t provide emission current, but the momoatomic active surface layer has a lower work function than clean molybdenum. [展开更多
Based on increasingly grim situation of carbon emissions in China,air pollution control and carbon emission reduction are very important. Therefore,combining with China’s specific national conditions,we should explor...Based on increasingly grim situation of carbon emissions in China,air pollution control and carbon emission reduction are very important. Therefore,combining with China’s specific national conditions,we should explore the market mechanisms to control air pollution and reduce carbon emissions in China. The achievement of the carbon emission reduction purpose needs to establish the carbon trade market based on intensity emission reduction and suitable for China’s national conditions. By setting the cross-industry,cross-region and cross-time carbon trade scenarios in China,this paper tries to study the market mechanism of carbon intensity trade among industries and regions and based on carbon finance mechanism.展开更多
In order to make further steps in dealing with climate change, China proposed to peak carbon dioxide emissions by about 2030 and to make best efforts for the peaking early. The carbon emission peak target(CEPT) must r...In order to make further steps in dealing with climate change, China proposed to peak carbon dioxide emissions by about 2030 and to make best efforts for the peaking early. The carbon emission peak target(CEPT) must result in a forcing mechanism on China's economic transition. This paper, by following the logical order from "research on carbon emission history" to "carbon emission trend prediction," from "research on paths of realizing peak" to "peak restraint research," provides a general review of current status and development trend of researches on China's carbon emission and its peak value. Furthermore,this paper also reviews the basic theories and specific cases of the forcing mechanism.Based on the existing achievements and development trends in this field, the following research directions that can be further expanded are put forward. First, from the perspective of long-term strategy of sustainable development, we should analyze and construct the forcing mechanism of CEPT in a reverse thinking way. Second, economic transition paths under the forcing mechanism should be systematically studied. Third, by constructing a large-scale policy evaluation model, the emission reduction performance and economic impact of a series of policy measures adopted during the transition process should be quantitatively evaluated.展开更多
The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission ca...The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method.展开更多
This paper explores the incentives of investment in renewable energy of two utility firms who compete or cooperate under either a cap-and-trade grandfathering mechanism(GM)or benchmarking mechanism(BM).We find that ut...This paper explores the incentives of investment in renewable energy of two utility firms who compete or cooperate under either a cap-and-trade grandfathering mechanism(GM)or benchmarking mechanism(BM).We find that utility firms will invest in renewable energy more under BM than under GM,in both competitive and cooperative markets,and they will invest more in a competitive market than in a cooperative market,under either GM or BM.Furthermore,utility firms will produce more electricity and generate more total carbon emissions under BM than under GM.The profits of two firms,however,are higher in cooperative market than in competitive market.The government will benefit from implementing a BM to encourage utility firms to invest in renewable energy in a competing market.展开更多
The rationality and scientific nature of the emission trading mechanism is the key to the effective implementation of environmental and economic policies.As far as China is concerned,there are phenomena such as inform...The rationality and scientific nature of the emission trading mechanism is the key to the effective implementation of environmental and economic policies.As far as China is concerned,there are phenomena such as information asymmetry,low supervision efficiency,and alienation of government and enterprise behaviors caused by the incomplete mechanism of emission trading in the practice of different pilots.The introduction of blockchain technology can innovate the traditional transaction model and form a decentralized peer-to-peer transaction and a trusted emission trading market.To this end,based on the current emission trading mechanism and the characteristics of blockchain technology,this paper couples the core technologies of blockchain with the functional requirements of application scenarios.Then,an innovative application framework is built based on the consortium blockchain Fabric from three aspects:emission trading supervision,secondary trading market construction,as well as emission trading incentive and punishment mechanisms.Technologies such as the consensus mechanism,smart contract,Merkle tree and asymmetric encryption are comprehensively applied in this process.In the construction of the blockchain framework of the secondary market for emission trading,institutional changes and innovations brought about by the blockchain at various levels are analyzed in terms of participants,transaction processes and the transaction scope.At the same time,smart contract functions and algorithms are designed for the purchase,transfer-out and trading of emission rights,and the operation business logic of the smart contract is analyzed.On the whole,this paper explores the application framework of blockchain technology in the field of emission trading at the macro level,and analyzes the application mechanism of the corresponding technologies of blockchain at each coupling point in the framework at the micro level.The collaborative analysis at the two levels shows that blockchain technology and the requirements of emission trading mechanism can be effectively coupled,and the application of blockchain technology can promote the effective supervision of enterprises'emission behavior,making the processes of the purchase,transfer and transaction of emission rights intelligent and automated,and providing technical support for cross regional emission trading to reduce transaction costs and management complexity.In addition,the issuance of emission credits based on smart contract will be a new incentive for companies to actively participate in transactions.Based on the above analysis,this paper believes that the innovative application of blockchain technology is of great significance in the promotion of the market-based allocation of element of emission trading and the rational allocation of environmental resources.It will lead to a major breakthrough in the traditional trading system in terms of trading modes,forming a value transmission network of environmental resources between the government and polluters.展开更多
The construction of China's carbon emission trading market has gone through a process from one-way participation in the international carbon market to voluntary emission reduction trading at home, and then to the ...The construction of China's carbon emission trading market has gone through a process from one-way participation in the international carbon market to voluntary emission reduction trading at home, and then to the total carbon emission right trading as the main and voluntary emission reduction trading as the auxiliary. The link of regional carbon emission trading system is conducive to reducing the cost of carbon emission reduction, promoting market liquidity, reducing operational risks of carbon market and reducing carbon leakage. The link of inter-provincial carbon market needs to break down administrative barriers and form a consensus on the link elements of carbon emission trading under the unified legal framework. The link of regional carbon emission trading system should be carried out from the aspects of legal mechanism construction, link mode selection and mutual recognition and assimilation of carbon emission trading system.展开更多
The size of underground openings in rock masses in metal mines is critical to the performance of the openings. In this study, the mechanical and acoustic emission (AE) characteristics of brittle rock-like specimens co...The size of underground openings in rock masses in metal mines is critical to the performance of the openings. In this study, the mechanical and acoustic emission (AE) characteristics of brittle rock-like specimens containing a circular opening with different ratios of opening diameter to sample size λ (λ = 0.1, 0.13, 0.17, 0.2, and 0.23) were investigated under uniaxial compression with AE monitoring. The results indicate that the opening size strongly affected the peak strength and the elastic modulus. Crack initiation first started from the upper surface of the specimens, not from the periphery of the openings. Tensile and shear cracks coexisted on the roof and floor of the specimens, whereas tensile cracks were dominant on the two sides. The fracture mode of samples with openings was partially affected by the relative size of the pillars and openings. The AE response curves (in terms of counts, cumulative energy, cumulative counts, and b-value) show that brittle failure was mainly a progressive process. Moreover, the AE information corresponded well with microcrack evolution in the samples and thus can be used to predict sample failure.展开更多
The mechanical properties and acoustic emission characteristics of thick hard roof sandstone were investigated. Samples were taken from the 30.87-m thick sandstone roof in a mine in the Shengdong coal field, China. Fi...The mechanical properties and acoustic emission characteristics of thick hard roof sandstone were investigated. Samples were taken from the 30.87-m thick sandstone roof in a mine in the Shengdong coal field, China. Firstly, the composition and microscopic characteristics were analyzed by XRD and FE-SEM, respectively. Moreover, the indirect tensile test, uniaxial compression test, three axis compression experiment and AE test are carried out by using RMT-150C mechanics experiment system with DSS-8B AE test system. The experiment results indicate that the main framework particles of sandstone are quartz and feldspar, and mainly quartz. Cements are mainly pyrite, kaolinite, chlorite and zeolite cross needle, clinochlore, and clay minerals. The microstructure of sandstone is very dense, with few pores and high cementation degree. The tensile strength, compressive strength and elastic modulus of sandstone are 4.825, 85.313 MPa, 13.814 GPa, respectively, so the sandstone belongs to hard rock. The AE cumulative counts of sandstone can be divided into three phases: relatively flat growth period, rapid growth period and spurt period. The signal strength of AE waveform can be used as a warning signal. In the tensile fracture zone, the warning value is 0.4 mV, and in the compression shear failure zone, it is 4 mV. The numbers of cumulative counts of AE under different stress conditions have obvious difference. Moreover, the growth of cumulative counts of acoustic emission is more obvious when the stress is more than 60% of the peak stress.展开更多
Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to su...Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency.展开更多
Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is we...Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading magnitudes to stress-dominated fracture propagation at high loading magnitudes.展开更多
The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acous...The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acoustic emission(AE)behaviors of coal samples under multi-stage compressive cyclic loading with different loading and unloading rates,which is termed differential cyclic loading(DCL).A Weibull-distribution-based model with heterogeneous bond strengths is constructed by both considering the stress-strain relations and AE parameters.Six previously loaded samples were respectively grouped to indicate two DCL regimes,the damage mechanisms for the two groups are explicitly characterized via the time-stress-dependent variation of bond size multiplier,and it is found the two regimes correlate with distinct damage patterns,which involves the competition between stiffness hardening and softening.The numerical b-value is calculated based on the mag-nitudes of AE energy,the results show that both stress level and bond radius multiplier can impact the numerical b-value.The proposed numerical model succeeds in replicating the stress-strain relations of lab data as well as the elastic-after effect in DCL tests.The effect of damping on energy dissipation and phase shift in numerical model is summarized.展开更多
The mechanical and field-emission properties of individual ZnO nanowires,grown by a solid-vapour phase thermal sublimation process,were studied in situ by transmission electron microscopy(TEM)using a home-made TEM spe...The mechanical and field-emission properties of individual ZnO nanowires,grown by a solid-vapour phase thermal sublimation process,were studied in situ by transmission electron microscopy(TEM)using a home-made TEM specimen holder.The mechanical resonance is electrically induced by applying an oscillating voltage,and in situ imaging has been achieved simultaneously.The mechanical results indicate that the elastic bending modulus of individual ZnO nanowires were measured to be~58 GPa.A nanobalance was buil...展开更多
The energy spectrum of the hydrogen atom has been applied in calculating the time rate of energy transitions between the quantum states of the atom. The formal basis of the approach has been provided by the quantum pr...The energy spectrum of the hydrogen atom has been applied in calculating the time rate of energy transitions between the quantum states of the atom. The formal basis of the approach has been provided by the quantum properties of energy and time deduced from the Joule-Lenz law. The rates of the energy transitions obtained in this way were compared with the quantum-mechanical probabilities of transitions calculated earlier by Bethe and Condon and Shortley for the same pairs of the quantum states.展开更多
Tortuous hydraulic fractures(HFs) are likely to be created in heterogeneous formations such as conglomerates, which may cause sand plugging, ultimately resulting in poor stimulation efficiency. This study aims to expl...Tortuous hydraulic fractures(HFs) are likely to be created in heterogeneous formations such as conglomerates, which may cause sand plugging, ultimately resulting in poor stimulation efficiency. This study aims to explore HF growth behavior in conglomerate through laboratory fracturing experiments under true tri-axial stresses combined with computed tomography scanning and acoustic emission(AE) monitoring. The effects of gravel size, horizontal differential stress, and AE focal mechanisms were examined. Especially, the injection pressure and the AE response features during HF initiation and propagation in conglomerate were analyzed. Simple HFs with narrow microfractures are created in conglomerate when the gravels are considerably smaller than the specimen, whereas complex fractures are created when the gravels are similar in size to the specimen, even under high horizontal differential stresses. Breakdown pressure and AE rates are high when a HF is initiated from the high-strength gravel. A large pressure decline after the breakdown may indicate the creation of a planar and wide HF. Analyzing the focal mechanism indicates that the shear mechanism generally dominates with an increase in the HF complexity. Tensile events are likely to occur during HF initiation and are located around the wellbore. Shear events occur mainly around the nonplanar and complex matrix/gravel interfaces.展开更多
The main method of casting coal spontaneous combustion is prediction of index gases, with carbon monoxide(CO) commonly used as an index gas. However, coal spontaneous combustion is not the sole source of CO evolution;...The main method of casting coal spontaneous combustion is prediction of index gases, with carbon monoxide(CO) commonly used as an index gas. However, coal spontaneous combustion is not the sole source of CO evolution; primal CO is generated through coalification, which can lead to forecasting mistakes. Through theoretical analysis, primal CO generation and emission from coal seams was determined.In this study, six coal samples were analyzed under six different experimental conditions. The results demonstrated the change in coal seam primal gas and concentration as functions of time, different coal samples, occurrence, various gas types and composition concentration, which are in agreement with the previous study on primal CO generation. Air charging impacts on primal gas emission. Analysis of the experimental data with SPSS demonstrates that the relationship between primal CO concentration and time shows a power exponent distribution.展开更多
By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities ...By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared,the influence mechanism of loading rates on the microscopic crack evolution were studied,combining the AE characteristics and the macroscopic failure modes of the specimens,and the precursory characteristics of coal failure were also analyzed quantitatively.The results indicate that as the loading rate is higher,the AE activity and the main fracture will begin earlier.The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate,and will transform from brittleness to ductility at critical velocities.When the deformation of the coal is mainly plasticity,the amplitude of the AE ringing counting rate increases largely and the AE energy curves appear an obvious ''step'',which can be defined as the first failure precursor point.Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92-98%,which can be defined as the other failure precursor point.As the loading rate is smaller,the coal more easily reaches the latter precursor point after the first one,so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.52364004)the Basic Research Project of Guizhou University (Grant No.[2023]40)support by the Helmholtz Association’s Initiative and Networking Fund for the Helmholtz Young Investigator Group ARES (Contract No.VH-NG-1516).
文摘A comprehensive understanding of shale’s bedding anisotropy is crucial for shale-related engineering activities,such as hydraulic fracturing,drilling and underground excavation.In this study,seven Brazilian tests were conducted on shale samples at different bedding orientations with respect to the loading direction(0°,45°and 90°)and the disc end face(0°,45°and 90°).An acoustic emission(AE)system was employed to capture the evolution of damage and the temporal-spatial distribution of microcracks under splitting-tensile stress.The results show that the Brazilian tensile strength decreases with increasing bedding inclination with respect to the disc end face,while it increases with the angle between bedding and loading directions.Increasing the bedding inclination with respect to the end face facilitates the reduction in b value and enhances the shale’s resistance to microcrack growth during the loading process.Misalignment between the bedding orientation and the end face suppresses the growth of mixed tensile-shear microcracks,while reducing the bedding angle relative to the loading direction is beneficial for creating mixed tensile-shear and tensile cracks.The observed microscopic failure characteristics are attributed to the competing effects of bedding activation and breakage of shale matrix at different bedding inclinations.The temporal-spatial distribution of microcracks,characterized by AE statistics including the correlation dimension and spatial correlation length,illustrates that the fractal evolution of microcracks is independent of bedding anisotropy,whereas the spatial distribution shows a stronger correlation.The evolution features of correlation dimension and spatial correlation length could be potentially used as precursors for shale splitting failure.These findings may be useful for predicting rock mass instability and analyzing the causes of catastrophic rupture.
基金supported by the National Basic Research Program of China (973 program, Grant No. 2012CB821800)the National Natural Science Foundation of China (Grant Nos. 11573008, 11178001, 11225314, 11303069 and 11373011)
文摘The Five-hundred-meter Aperture Spherical radio Telescope(FAST) has the potential to discover many new pulsars and new phenomena. In this paper we mainly concentrate on how FAST can impact study of the pulsar emission mechanism and magnetospheric dynamics. Several observational programs heading to this direction are reviewed. To make full use of the superior performance of FAST and maximize the scientific outcome, these programs can be arranged in different phases of FAST according to their demands for observational conditions. We suggest that programs can be performed following the test phase, which are observations of multifrequency mean pulse profiles, anomalous X-ray pulsars(AXPs)/soft gamma-ray repeaters(SGRs), mode changing, drifting subpulse and nulling. The long-term monitoring can be carried out for mode changing, AXPs/SGRs and precessional pulsars. Others programs, including polarization observations of radio and γ-ray pulsars, searching for weak pulse components, and multifrequency observations of subpulse drifting, microstructure and giant pulses, can be conducted in all the normal operating phases(the first and second phases). These programs will push forward the frontier in this field in different respects. The search for sub-millisecond pulsars and follow-up observations of their emission properties are very important projects for FAST, but they may be covered by other papers in this mini-volume; therefore,they are not discussed here.
文摘The valence of element yttrium of Y 2O 3 Mo cathode material was studied by thermal analysis, X ray diffraction analysis, scanning electron microscopy and X ray photoelectron spectra, and the emission mechanism of Mo Y 2O 3 cathode was discussed. It was proved that reaction between powder Y 2O 3 and Mo 2C can happen at 1 173 K, and Y 2O 3 be reduced to metallic yttrium. After the powder mixture of Y 2O 3 and Mo 2C is heat treated at 1 873 K, yttrium exists in two kinds of state—yttrium of zero valence and yttrium of three valences. The formation of monoatomic layer of metallic yttrium at the surface of filament is the cause of emissivity of the cathode. Yttrium at the surface doesn’t provide emission current, but the momoatomic active surface layer has a lower work function than clean molybdenum. [
基金Supported by National Social Science Fund,China(12CJY034)
文摘Based on increasingly grim situation of carbon emissions in China,air pollution control and carbon emission reduction are very important. Therefore,combining with China’s specific national conditions,we should explore the market mechanisms to control air pollution and reduce carbon emissions in China. The achievement of the carbon emission reduction purpose needs to establish the carbon trade market based on intensity emission reduction and suitable for China’s national conditions. By setting the cross-industry,cross-region and cross-time carbon trade scenarios in China,this paper tries to study the market mechanism of carbon intensity trade among industries and regions and based on carbon finance mechanism.
基金National Natural Science Foundation of China Projects "Study on the Forced Mechanism of Carbon Emission Peak Target in China:Transition Pathways,Emission Reduction Performance and Economic Effects"[grant number:71673217],"Study on Green Behaviors of Households"[grant number:71573217]Shaanxi Soft Science Research Project "Cost and Benefit analysis of Residential End-use Demand Side Management under Smart Grid in Xi'an City"[grant number:2015KRM143]
文摘In order to make further steps in dealing with climate change, China proposed to peak carbon dioxide emissions by about 2030 and to make best efforts for the peaking early. The carbon emission peak target(CEPT) must result in a forcing mechanism on China's economic transition. This paper, by following the logical order from "research on carbon emission history" to "carbon emission trend prediction," from "research on paths of realizing peak" to "peak restraint research," provides a general review of current status and development trend of researches on China's carbon emission and its peak value. Furthermore,this paper also reviews the basic theories and specific cases of the forcing mechanism.Based on the existing achievements and development trends in this field, the following research directions that can be further expanded are put forward. First, from the perspective of long-term strategy of sustainable development, we should analyze and construct the forcing mechanism of CEPT in a reverse thinking way. Second, economic transition paths under the forcing mechanism should be systematically studied. Third, by constructing a large-scale policy evaluation model, the emission reduction performance and economic impact of a series of policy measures adopted during the transition process should be quantitatively evaluated.
基金supported by the National Natural Science Foundation of China(Grant Nos.11305263 and 61401484)
文摘The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method.
基金support from the National Natural Science Foundation of China(Grant No.71531003)Philosophy and Social Science Research Fund of Chengdu University of Technology(YJ2021-QN005)Center for Trans-Himalaya Studies(KX2022B01)。
文摘This paper explores the incentives of investment in renewable energy of two utility firms who compete or cooperate under either a cap-and-trade grandfathering mechanism(GM)or benchmarking mechanism(BM).We find that utility firms will invest in renewable energy more under BM than under GM,in both competitive and cooperative markets,and they will invest more in a competitive market than in a cooperative market,under either GM or BM.Furthermore,utility firms will produce more electricity and generate more total carbon emissions under BM than under GM.The profits of two firms,however,are higher in cooperative market than in competitive market.The government will benefit from implementing a BM to encourage utility firms to invest in renewable energy in a competing market.
文摘The rationality and scientific nature of the emission trading mechanism is the key to the effective implementation of environmental and economic policies.As far as China is concerned,there are phenomena such as information asymmetry,low supervision efficiency,and alienation of government and enterprise behaviors caused by the incomplete mechanism of emission trading in the practice of different pilots.The introduction of blockchain technology can innovate the traditional transaction model and form a decentralized peer-to-peer transaction and a trusted emission trading market.To this end,based on the current emission trading mechanism and the characteristics of blockchain technology,this paper couples the core technologies of blockchain with the functional requirements of application scenarios.Then,an innovative application framework is built based on the consortium blockchain Fabric from three aspects:emission trading supervision,secondary trading market construction,as well as emission trading incentive and punishment mechanisms.Technologies such as the consensus mechanism,smart contract,Merkle tree and asymmetric encryption are comprehensively applied in this process.In the construction of the blockchain framework of the secondary market for emission trading,institutional changes and innovations brought about by the blockchain at various levels are analyzed in terms of participants,transaction processes and the transaction scope.At the same time,smart contract functions and algorithms are designed for the purchase,transfer-out and trading of emission rights,and the operation business logic of the smart contract is analyzed.On the whole,this paper explores the application framework of blockchain technology in the field of emission trading at the macro level,and analyzes the application mechanism of the corresponding technologies of blockchain at each coupling point in the framework at the micro level.The collaborative analysis at the two levels shows that blockchain technology and the requirements of emission trading mechanism can be effectively coupled,and the application of blockchain technology can promote the effective supervision of enterprises'emission behavior,making the processes of the purchase,transfer and transaction of emission rights intelligent and automated,and providing technical support for cross regional emission trading to reduce transaction costs and management complexity.In addition,the issuance of emission credits based on smart contract will be a new incentive for companies to actively participate in transactions.Based on the above analysis,this paper believes that the innovative application of blockchain technology is of great significance in the promotion of the market-based allocation of element of emission trading and the rational allocation of environmental resources.It will lead to a major breakthrough in the traditional trading system in terms of trading modes,forming a value transmission network of environmental resources between the government and polluters.
文摘The construction of China's carbon emission trading market has gone through a process from one-way participation in the international carbon market to voluntary emission reduction trading at home, and then to the total carbon emission right trading as the main and voluntary emission reduction trading as the auxiliary. The link of regional carbon emission trading system is conducive to reducing the cost of carbon emission reduction, promoting market liquidity, reducing operational risks of carbon market and reducing carbon leakage. The link of inter-provincial carbon market needs to break down administrative barriers and form a consensus on the link elements of carbon emission trading under the unified legal framework. The link of regional carbon emission trading system should be carried out from the aspects of legal mechanism construction, link mode selection and mutual recognition and assimilation of carbon emission trading system.
基金financially supported by the National Natural Science Foundation of China (No. 51774022)the State Key Research Development Program of China (No. 2016YFC0600801)+1 种基金the Beijing Natural Science Foundation (No. 2184108)the China Postdoctoral Science Foundation (No. 2017M620620)
文摘The size of underground openings in rock masses in metal mines is critical to the performance of the openings. In this study, the mechanical and acoustic emission (AE) characteristics of brittle rock-like specimens containing a circular opening with different ratios of opening diameter to sample size λ (λ = 0.1, 0.13, 0.17, 0.2, and 0.23) were investigated under uniaxial compression with AE monitoring. The results indicate that the opening size strongly affected the peak strength and the elastic modulus. Crack initiation first started from the upper surface of the specimens, not from the periphery of the openings. Tensile and shear cracks coexisted on the roof and floor of the specimens, whereas tensile cracks were dominant on the two sides. The fracture mode of samples with openings was partially affected by the relative size of the pillars and openings. The AE response curves (in terms of counts, cumulative energy, cumulative counts, and b-value) show that brittle failure was mainly a progressive process. Moreover, the AE information corresponded well with microcrack evolution in the samples and thus can be used to predict sample failure.
文摘The mechanical properties and acoustic emission characteristics of thick hard roof sandstone were investigated. Samples were taken from the 30.87-m thick sandstone roof in a mine in the Shengdong coal field, China. Firstly, the composition and microscopic characteristics were analyzed by XRD and FE-SEM, respectively. Moreover, the indirect tensile test, uniaxial compression test, three axis compression experiment and AE test are carried out by using RMT-150C mechanics experiment system with DSS-8B AE test system. The experiment results indicate that the main framework particles of sandstone are quartz and feldspar, and mainly quartz. Cements are mainly pyrite, kaolinite, chlorite and zeolite cross needle, clinochlore, and clay minerals. The microstructure of sandstone is very dense, with few pores and high cementation degree. The tensile strength, compressive strength and elastic modulus of sandstone are 4.825, 85.313 MPa, 13.814 GPa, respectively, so the sandstone belongs to hard rock. The AE cumulative counts of sandstone can be divided into three phases: relatively flat growth period, rapid growth period and spurt period. The signal strength of AE waveform can be used as a warning signal. In the tensile fracture zone, the warning value is 0.4 mV, and in the compression shear failure zone, it is 4 mV. The numbers of cumulative counts of AE under different stress conditions have obvious difference. Moreover, the growth of cumulative counts of acoustic emission is more obvious when the stress is more than 60% of the peak stress.
基金Projects(52225403,U2013603,42377143)supported by the National Natural Science Foundation of ChinaProject(2023NSFSC0004)supported by the Sichuan Science and Technology Program,China+1 种基金Project(2023YFB2390200)supported by the National Key R&D Program-Young Scientist Program,ChinaProject(RCJC20210706091948015)supported by the Shenzhen Science Foundation for Distinguished Young Scholars,China。
文摘Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency.
基金funded by the German Federal Ministry for Economic Affairs(FKZ 0325279B)
文摘Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading magnitudes to stress-dominated fracture propagation at high loading magnitudes.
基金funded by Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining (GJNY-20-113-03),SHGF-16-19the Fundamental Research Funds for the Central Universities (06500182)+2 种基金Funds from Joint National-Local Engineering Research Center for Safe and Precise Coal Mining (EC2021004)Funds from State Key Laboratory of Coal Resources in Western China (SKLCRKF20-07)Funds from Humboldt Research Fellowship,Funds from NSFC (52204086).
文摘The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acoustic emission(AE)behaviors of coal samples under multi-stage compressive cyclic loading with different loading and unloading rates,which is termed differential cyclic loading(DCL).A Weibull-distribution-based model with heterogeneous bond strengths is constructed by both considering the stress-strain relations and AE parameters.Six previously loaded samples were respectively grouped to indicate two DCL regimes,the damage mechanisms for the two groups are explicitly characterized via the time-stress-dependent variation of bond size multiplier,and it is found the two regimes correlate with distinct damage patterns,which involves the competition between stiffness hardening and softening.The numerical b-value is calculated based on the mag-nitudes of AE energy,the results show that both stress level and bond radius multiplier can impact the numerical b-value.The proposed numerical model succeeds in replicating the stress-strain relations of lab data as well as the elastic-after effect in DCL tests.The effect of damping on energy dissipation and phase shift in numerical model is summarized.
文摘The mechanical and field-emission properties of individual ZnO nanowires,grown by a solid-vapour phase thermal sublimation process,were studied in situ by transmission electron microscopy(TEM)using a home-made TEM specimen holder.The mechanical resonance is electrically induced by applying an oscillating voltage,and in situ imaging has been achieved simultaneously.The mechanical results indicate that the elastic bending modulus of individual ZnO nanowires were measured to be~58 GPa.A nanobalance was buil...
文摘The energy spectrum of the hydrogen atom has been applied in calculating the time rate of energy transitions between the quantum states of the atom. The formal basis of the approach has been provided by the quantum properties of energy and time deduced from the Joule-Lenz law. The rates of the energy transitions obtained in this way were compared with the quantum-mechanical probabilities of transitions calculated earlier by Bethe and Condon and Shortley for the same pairs of the quantum states.
基金supported by the Major National Science and Technology Projects of China (No. 2016ZX05046004002 No. 2017ZX05039002-003)the National Basic Research Program of China (No. 2015CB250903)
文摘Tortuous hydraulic fractures(HFs) are likely to be created in heterogeneous formations such as conglomerates, which may cause sand plugging, ultimately resulting in poor stimulation efficiency. This study aims to explore HF growth behavior in conglomerate through laboratory fracturing experiments under true tri-axial stresses combined with computed tomography scanning and acoustic emission(AE) monitoring. The effects of gravel size, horizontal differential stress, and AE focal mechanisms were examined. Especially, the injection pressure and the AE response features during HF initiation and propagation in conglomerate were analyzed. Simple HFs with narrow microfractures are created in conglomerate when the gravels are considerably smaller than the specimen, whereas complex fractures are created when the gravels are similar in size to the specimen, even under high horizontal differential stresses. Breakdown pressure and AE rates are high when a HF is initiated from the high-strength gravel. A large pressure decline after the breakdown may indicate the creation of a planar and wide HF. Analyzing the focal mechanism indicates that the shear mechanism generally dominates with an increase in the HF complexity. Tensile events are likely to occur during HF initiation and are located around the wellbore. Shear events occur mainly around the nonplanar and complex matrix/gravel interfaces.
基金provided by the National Natural Science Foundation of China(No.U1261214)
文摘The main method of casting coal spontaneous combustion is prediction of index gases, with carbon monoxide(CO) commonly used as an index gas. However, coal spontaneous combustion is not the sole source of CO evolution; primal CO is generated through coalification, which can lead to forecasting mistakes. Through theoretical analysis, primal CO generation and emission from coal seams was determined.In this study, six coal samples were analyzed under six different experimental conditions. The results demonstrated the change in coal seam primal gas and concentration as functions of time, different coal samples, occurrence, various gas types and composition concentration, which are in agreement with the previous study on primal CO generation. Air charging impacts on primal gas emission. Analysis of the experimental data with SPSS demonstrates that the relationship between primal CO concentration and time shows a power exponent distribution.
文摘By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared,the influence mechanism of loading rates on the microscopic crack evolution were studied,combining the AE characteristics and the macroscopic failure modes of the specimens,and the precursory characteristics of coal failure were also analyzed quantitatively.The results indicate that as the loading rate is higher,the AE activity and the main fracture will begin earlier.The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate,and will transform from brittleness to ductility at critical velocities.When the deformation of the coal is mainly plasticity,the amplitude of the AE ringing counting rate increases largely and the AE energy curves appear an obvious ''step'',which can be defined as the first failure precursor point.Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92-98%,which can be defined as the other failure precursor point.As the loading rate is smaller,the coal more easily reaches the latter precursor point after the first one,so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.