China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the gove...China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the government, industries, and society to work together. This paper showed that a mediumehigh economic growth gate, industry structure adjustment, and energy structure adjustment, which are guaranteed under the Five-Year Plan, all contribute to energy saving in China. The economy entered a stable growing phase during the 12 th Five-Year Plan, while the economic growth rate declined to 7.8% from 11.2% in the 11 th Five-Year Plan. Simultaneously, the CO2 emissions growth rate declined from8.32%(2009-2012 mean) to 1.82%(2012-2014 mean). Industrial structure adjustment canceled out nearly one-third of the CO2 emissions caused by economic growth. Under the 13 th Five-Year Plan, China will continue its energy saving efforts on the green development path, with greener quotas, a stricter implementation process, and more key projects.展开更多
The impacts of the meteorological condition and emissions reduction on the aerosol concentration over the Beijing-Tianjin-Hebei(BTH) region during the COVID-19 lockdown were analyzed by conducting three numerical expe...The impacts of the meteorological condition and emissions reduction on the aerosol concentration over the Beijing-Tianjin-Hebei(BTH) region during the COVID-19 lockdown were analyzed by conducting three numerical experiments,including one with the meteorological field in 2019 and MEIC-2019(2019 monthly Multi-resolution Emissions Inventory for China),one with the meteorological field in 2020 and MEIC-2019,and one with the meteorological field in 2020 and MEIC-2020,via a WRF-Chem model.The numerical experiments were performed from 3 to 16 February in 2019 and in 2020,during which a severe fog-haze event(3-16 February 2020) occurred in the BTH region,with a simulated maximum daily PM2.5 of 245μg m-3 in Tangshan and 175μg m-3 in Beijing.The results indicate that the daily PM2.5 decreased by 5-150μg m-3 due to the emissions reduction and increased by 10-175 μg m-3 due to the meteorological condition in Beijing,Shijiazhuang,Cangzhou,Handan,Hengshui,Chengde,Zhangjiakou,and Tangshan from 7 to 14 February.For the horizontal distribution,PM2.5 and different aerosol species concentrations from 7 to 14 February 2020 increased compared with those during the same period in 2019,indicating that the accumulation of pollutants caused by the unfavorable meteorological condition offset the decreases caused by the emissions reduction,leading to the high aerosol concentration during the COVID-19 lockdown.展开更多
The impact of environmental regulation on technology innovation is a hot spot in current research where a large number of empirical studies are based on Porter Hypothesis(PH). However, there are still controversies in...The impact of environmental regulation on technology innovation is a hot spot in current research where a large number of empirical studies are based on Porter Hypothesis(PH). However, there are still controversies in academia about the establishment of "weak" and "narrow" versions of PH. Based on the panel data of application for patent of energy conservation and emission reduction(ECER) technology of Chinese city scale during 2008-2014, comprehensive energy price, pollutant emission, etc., mixed regression model and systematic generalized method of moments method were adopted, respectively,to study the impact of market-oriented and command-and-control policy tool on China's ECER technology innovation. The results show that the environmental regulation hindered the technological innovation in the immediate phase; however, it turned out to be positive in the first-lag phase. Hence, the establishment of "weak" PH is time-bounded. The command-and-control policy tool played a more positive role in promoting technological innovation in the first-lag phase than market-oriented policy tool. Therefore, "narrow" PH is not tenable. The reason is that the main participants of China's ECER technology innovation are state-owned companies and public institutions. Regionally speaking, the impact which command-and-control policy tool has on technological innovation at sight was nonsignificant in the eastern, the central, and the western regions of China whilst market-oriented policy tool had a negative effect. And market-oriented policy tool in the central region had strongest negative effect, which would diminish in the eastern region and become weakest in the western region. This was related to regional energy consumption level and the market economic vitality.展开更多
Based on the total-factor energy efficiency framework,this paper calculates China's industrial energy efficiency and CO2 emissions reduction potential from 2000 to 2009 by utilizing the directional distance functi...Based on the total-factor energy efficiency framework,this paper calculates China's industrial energy efficiency and CO2 emissions reduction potential from 2000 to 2009 by utilizing the directional distance function and data envelopment analysis.The empirical results show that:China's industrial overall energy efficiency is relatively lower while the emis-sions reduction potential is relatively greater,given the optimum production frontier.Significant indus-trial disparities of energy efficiency and emissions reduction potential exist.Energy efficiency and emis-sions reduction potential significantly show different tendencies of industrial dynamic variation.This paper suggests the Chinese government impose differential carbon taxes,flexibly utilize carbon market mecha-nism,strengthen energy-saving technological R&D,promote the utilization of renewable energy,and strengthen environmental supervision and regulation,so as to improve China's industrial energy efficiency and reduce CO2 emissions.展开更多
This paper analyzes current urban symbiosis development and application in China, and then conducts a statistical analysis of the emissions reduction of CO2 and CH4 in relation to recovery of iron and steel scraps, wa...This paper analyzes current urban symbiosis development and application in China, and then conducts a statistical analysis of the emissions reduction of CO2 and CH4 in relation to recovery of iron and steel scraps, waste paper, and waste plastics from 2011 to 2014 using the greenhouse gas(GHG) emission inventory calculation method provided by the IPCC. Results indicate that the cumulative recovery of renewable resources during China's main urban symbiosis development in 2011-2014 was 803.275 Mt, and the amount of iron and steel scraps, waste paper, and waste plastic recovery was the largest, respectively accounting for 62.2%, 18.0%, and 8.2% of total recovery in 2014. In addition, the cumulative emissions reduction of GHGs in relation to recovery of iron and steel scraps, waste paper, and waste plastics in 2011-2014 was27.962 Mt CO2-eq, 954.695 Mt CO2-eq, and 22.502 Mt CO2-eq, respectively, thereby totaling 1005.159 Mt CO2-eq. Results show a remarkable GHG emissions reduction during 2011-2014.展开更多
Current energy conservation and emissions reduction strategies in iron and steel industry were reviewed. Since foundry industry is one of the major source of energy consumption and pollution emission (especially CO 2 ...Current energy conservation and emissions reduction strategies in iron and steel industry were reviewed. Since foundry industry is one of the major source of energy consumption and pollution emission (especially CO 2 ), issues concerning energy-saving and emission-reduction have been raised by governments and the industry. Specialists from around the world carried out multidimensional analyses and evaluation on the potentials in energy conservation and emissions reduction in iron and steel industry, and proposed various kinds of analyzing models. The primary measures mainly focus on the targeted policies formulation and also on clean and highefficient technologies development. The differences and similarities in energy conservation and emission reduction in foundry industry between China and other countries were discussed, while, the future development trend was also pointed out.展开更多
Fossil-fuel burning greenhouse gas induced global warming has been recognized as global environmental problems,reduce and ultimately control the energy production in the use of CO_2 emissions, global energy production...Fossil-fuel burning greenhouse gas induced global warming has been recognized as global environmental problems,reduce and ultimately control the energy production in the use of CO_2 emissions, global energy production will be a major challenge.As a highly intensive materials and energy,iron and steel enterprises,need to be invested to produce one ton of steel about two tons of material and 0.7 t of standard coal energy,and while producing two tons of CO_2.Therefore,reducing CO_2 emissions from iron and steel industry has become the focus of the global steel industry.This paper describes an integrated domestic and international measures to control carbon dioxide emissions research progress and future technology trends, with emphasis on the domestic steel industry emissions of carbon dioxide status of technology development and industrialization of implementation of the proposed on this basis,including dry quenching technology, gas,power generation,coal moisture control technology,blast furnace injection plastics technology,the use of coking process for treating municipal waste plastics technology,sintering heat generation,low pressure saturated steam for power generation,metallurgical slag heat recovery technology,coke oven gas hydrogen technology and the other key technologies energy saving technologies,including the development,promotion and popularization of the steel industry in China will be the CO_2 emission reduction technology direction and focus.At this stage,the Chinese steel industry can be improved the energy efficiency and recycling of waste heat and energy,reduce unit GDP,CO_2 emissions;but in the long run,should increase CO_2 capture and storage on the input of technology can possible effective control of the adverse effects of CO_2 emissions.展开更多
This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life...This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life cycle carbon emissions of High-Speed Rail(HSR),battery electric vehicles,conventional internal combustion engine vehicles,battery electric buses,and conventional internal combustion engine buses are analyzed.The life cycle is segmented into vehicle manufacturing,fuel or electricity production,operational,and dismantlingrecycling stages.This analysis is applied to the Beijing-Tianjin intercity transportation system to explore emission reduction strategies.Results indicate that HSR demonstrates significant carbon emission reduction,with an intensity of only 24%-32% compared to private vehicles and 47%-89% compared to buses.Notably,HSR travel for Beijing-Tianjin intercity emits only 24% of private vehicle emissions,demonstrating the emission reduction benefits of transportation structure optimization.Additionally,predictive modeling reveals the potential for carbon emission reduction through energy structure optimization,providing a guideline for the development of effective transportation management systems.展开更多
An in-depth investigation into the effect of embedment in global value chain(GVC)on energy conservation and emissions reduction is of great significance for scientifically assessing the environmental impact of GVC par...An in-depth investigation into the effect of embedment in global value chain(GVC)on energy conservation and emissions reduction is of great significance for scientifically assessing the environmental impact of GVC participation,and promoting high-quality development in China.This paper incorporates GVC embedment,energy consumption and carbon emissions into the same analysis framework for the first time.Based on the WIOD database,this paper theoretically and empirically examines the impact and mechanism of global value chain embeddedness on carbon emission reduction from two dimensions:energy consumption intensity and energy consumption structure.The study found that GVC embedment significantly reduced the industry’s carbon emission intensity;developing economies’embedment in GVC helped reduce their carbon emission intensity,while the effect was not obvious in developed economies.GVC embedment had a significant inhibitory effect on the carbon emissions in both upstream and downstream industries,but not conducive to carbon reduction of lowtech manufacturing.The mechanism test shows that the GVC embedment not only exhibits the dual effects of energy conservation and emissions reduction,but also has a significant impact on carbon emissions by reducing the energy consumption intensity and improving the energy consumption structure.展开更多
The nested-grid capability of the global chemical transport model GEOS-Chem, with a horizontal resolution of 1/4°× 5/16° (latitude x longitude), was used to identify the chemical species whose reducti...The nested-grid capability of the global chemical transport model GEOS-Chem, with a horizontal resolution of 1/4°× 5/16° (latitude x longitude), was used to identify the chemical species whose reductions made the largest contributions to decreases in PM2.s concentrations (fine particulate matter, diameter 〈 2.5μm, defined in this study as the sum of sulfate, nitrate, ammonium, black carbon, and organic carbon aerosols) in Beijing during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. A number of numerical experiments were carried out for the period 15 October-29 November 2014. The model reproduced the observed daily variations of concentrations of PM2.s and gas-phase species (carbon monoxide, nitrogen dioxide, and sulfur dioxide). Simulated PM2.s concentrations decreased by 55.9%-58.5% during the APEC period, compared to other periods in October and November 2014, which agreed closely with measurements. Sensitivity results showed that emissions control measures regarding nitrogen oxides and organic carbon over North China led to the largest reductions in PM2.s concentrations in Beijing during the APEC summit, which led to overall reductions in the PM2.5 concentration of Beijing by 5.7% and 4.6%, respectively. The control of ammonia emissions was found to be able to greatly reduce PM2.5 concentrations in the whole of North China during the APEC meeting.展开更多
As an important transportation infrastructure and transportation backbone in China,high-speed rail(HSR)plays a critical role in promoting the development of green and low-carbon transportation.Calculating the CO_(2) e...As an important transportation infrastructure and transportation backbone in China,high-speed rail(HSR)plays a critical role in promoting the development of green and low-carbon transportation.Calculating the CO_(2) emissions reduction performance of HSR will be conduci v e to pr omote the CO_(2) emissions r eduction w ork of the r ail w ay.Based on the Dalkic HSR CO_(2) emissions r eduction performance model,by adjusting the HSR CO_(2) emission factor(CEF HSR),the annual times of departures(T)and other parameters,this study develops a Chinese HSR CO_(2) emissions reduction performance model.Taking the Beijing-Shanghai HSR as the resear c h object,this study conducts a questionnaire survey to explore the substitution effect and demand effect of HSR on different transportation modes;collects data such as passenger v olume,av era ge electricity use and annual times of departures of the Beijing-Shanghai HSR in 2019;and calculates the CO_(2) emissions reduction performance of the Beijing-Shanghai HSR.This study has two main results:(1)It builds a Chinese HSR CO_(2) emissions reduction performance model based on substitution effect and demand effect.(2)In 2019,the CO_(2) emissions of the Beijing-Shanghai HSR are 2898233.62 t,the CO_(2) emissions reduction performance of the Beijing-Shanghai HSR is 17999482.8 t,the annual CO_(2) emissions of the Beijing-Shanghai line in‘No HSR’case are 7.2 times as in the’HSR’case and the PKT of the HSR is 10.2 g/pkm.Based on the research results,this study proposes three CO_(2) emissions reduction policy suggestions.This study would be helpful for further HSR CO_(2) emissions reduction resear c h and departments related to railway transportation management to make CO_(2) emissions reduction policies.展开更多
The treatment of domestic and industrial wastewater is one of the major sources of CH_4 in the Chinese waste sector. On the basis of statistical data and country-specific emission factors, using IPCC methodology, the ...The treatment of domestic and industrial wastewater is one of the major sources of CH_4 in the Chinese waste sector. On the basis of statistical data and country-specific emission factors, using IPCC methodology, the characteristics of CH_4 emissions from wastewater treatment in China were analyzed. The driving factors of CH_4 emissions were studied, and the emission trend and reduction potential were predicted and analyzed according to the current situation. Results show that in 2010, CH_4 emissions from the treatment of domestic and industrial wastewater were0.6110 Mt and 1.6237 Mt, respectively. Eight major industries account for more than 92% of emissions, and CH_4 emissions gradually increased from 2005 to 2010. From the controlling management scenario, we predict that in 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will be 1.0136 Mt and 2.3393 Mt, respectively, and the reduction potential will be 0.0763 Mt and 0.2599 Mt, respectively.From 2010 to 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will increase by 66% and 44%, respectively.展开更多
NH3 is one of the leading causes of grey haze, and one of the main causes of serious ecological imbalances that result in environmental problems such as acid rain and air quality deterioration. At present, excessive f...NH3 is one of the leading causes of grey haze, and one of the main causes of serious ecological imbalances that result in environmental problems such as acid rain and air quality deterioration. At present, excessive fertilizer application greatly intensifies NH3 emissions intensity on farmland. In order to understand status and achievements of research on farmland NH3 emissions, the literature of farmland NH3 emission-related studies was retrieved from SCl journals and the Chinese science citation database. These are summarized with respect to the research progress on NH3 emission factors and emission reduction technologies. The future research direction of field NH3 emission and emission reduction technology need to strengthen the field observation on different soil environment and crop types, and understand the effect of NH3 emission on fertilizer application period and the proportion, temperature and organic fertilizer management in farmland mainly. The research results can provide more information about the factors that influence NH3 emissions. This study offers theoretical guidance and support directed at mitigating farmland NH3 emissions in the future.展开更多
Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore ...Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy.展开更多
Under the background of"dual-carbon",green finance is an important way to promote carbon emission reduction and realize the development of a low-carbon economy.Using provincial panel data from 2000 to 2020,t...Under the background of"dual-carbon",green finance is an important way to promote carbon emission reduction and realize the development of a low-carbon economy.Using provincial panel data from 2000 to 2020,this paper constructs a basic regression model to study the"carbon reduction"effect,mechanism of action,and heterogeneity of green finance.The study finds that:the development of green finance significantly inhibits carbon emissions and has an obvious"carbon reduction"effect;green technology innovation has a mediating effect on the carbon emission reduction effect of green finance;in regions with a high level of economic development or a high degree of marketization,the"carbon reduction"effect of green finance is significant.展开更多
As part of efforts to reduce anthropogenic CO_(2) emissions by the steelmaking industry,this study investigated the direct reduction of industrially produced hematite pellets with H_(2) using the Doehlert experimental...As part of efforts to reduce anthropogenic CO_(2) emissions by the steelmaking industry,this study investigated the direct reduction of industrially produced hematite pellets with H_(2) using the Doehlert experimental design to evaluate the effect of pellet diameter(10.5-16.5 mm),porosity(0.36-0.44),and temperature(600-1200℃).A strong interactive effect between temperature and pellet size was observed,indicating that these variables cannot be considered independently.The increase in temperature and decrease in pellet size considerably favor the reduction rate,while porosity did not show a relevant effect.The change in pellet size during the reduction was negligible,except at elevated temperatures due to crack formation.A considerable decrease in mechanical strength at high temperatures suggests a maximum process operating temperature of 900℃.Good predictive capacity was achieved using the modified grain model to simulate the three consecutive non-catalytic gas-solid reactions,considering different pellet sizes and porosities,changes during the reaction from 800 to 900℃.However,for other temperatures,different mechanisms of structural modifications must be considered in the modeling.These results represent significant contributions to the development of ore pellets for CO_(2)-free steelmaking technology.展开更多
This paper reflects the actual effect of China’s environmental protection tax by empirically analyzing the environmental effect of the emission fee, in order to provide reference for China’s environmental tax reform...This paper reflects the actual effect of China’s environmental protection tax by empirically analyzing the environmental effect of the emission fee, in order to provide reference for China’s environmental tax reform. Based on the traditional environmental “Kuznets” model, the factor of environmental tax is added to verify the effect of environmental governance of environmental tax. The results show that: 1) the improvement of sulfur dioxide emission charge standard can effectively inhibit industrial sulfur dioxide emission, which verifies the existence of environmental effect of pollution levy policies</span><span style="font-family:"">.</span><span style="font-family:""> 2) The improvement of sewage charge standard has better inhibitory effect on sulfur dioxide emission per unit GDP than on sulfur dioxide emission</span><span style="font-family:"">.</span><span style="font-family:""> 3) There is regional heterogeneity in the “emission reduction” effect of sulfur dioxide emission charges in the eastern, central and western regions of China. Pollutants should be taxed differently according to regional differences</span><span style="font-family:"">.</span><span style="font-family:""> 4) Economic growth and sulfur dioxide emission show an inverted “U” shape, China is still in the stage before the inflection point of EKC. Economic growth still takes environmental damage as the cost, and the “emission reduction” effect of technological progress is not ideal, which reveals the urgency of increasing technological development in the field of green environmental protection under the current situation.展开更多
In November 2011, the Australian government approved the legislation (Clean Energy Act 2011) to introduce a reduction plan of carbon emissions in Australia. This plan will be implemented from July 2012. This is one ...In November 2011, the Australian government approved the legislation (Clean Energy Act 2011) to introduce a reduction plan of carbon emissions in Australia. This plan will be implemented from July 2012. This is one of the first accounting studies to investigate the potential impacts of this plan on long-lived asset values and operating cash flows for Australian listed companies. A sample of Australian Securities Exchange (ASX) 200 indexed companies from 2'006 to 2010 is used. Hypotheses are tested based on Heckman's (1979) two-stage approach. Three regression models are developed to examine the association between carbon emissions and asset values/operating cash flows. This study finds that asset values and operating cash flows will be adversely affected, if the reduction plan is implemented. Specifically, this study finds that the book value of long-lived assets will decrease, if listed companies are considered to be emissions-liable. The book value of long-lived assets is further found to be negatively associated with listed companies' carbon emission levels. This study also demonstrates that operating cash flows of emissions-liable companies will be adversely affected. However, this study does not find a relationship between operating cash flows and companies' emission levels. The empirical findings from Australian listed companies provide the evidence that the reduction plan of carbon emissions will adversely affect corporate entities' asset values and operating cash flows. The results further indicate that the magnitude of the impact will be proportional to the companies' emission levels. The implications of these empirical findings for listed companies, for the accounting profession, and for carbon emission regulators are also discussed.展开更多
For studying new and renewable energy as a substitute for fossil energy in primary energy consumption and its impact on carbon emissions to cope with economic uncertainties, a multi-sector DSGE model was employed to s...For studying new and renewable energy as a substitute for fossil energy in primary energy consumption and its impact on carbon emissions to cope with economic uncertainties, a multi-sector DSGE model was employed to simulate the dynamic impact on carbon emissions and macroeconomic development. The structural adjustment of energy consumption and the carbon emissions mitigation policy were considered in the model. The simulation results showed that using new and renewable energy instead of fossil energy is an optimal choice for the firms to comply with the regulations of carbon emission mitigation policy. Structural adjustment of energy consumption is the best route to achieve the dual goal of economic development and carbon emission reduction. Unexpected sharp fall in free carbon quota has a negative impact on the economy.展开更多
The issues of reducing CO_2 emissions, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenges for sustainable development in energy and the environment. We propose an effic...The issues of reducing CO_2 emissions, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenges for sustainable development in energy and the environment. We propose an efficient methodology via the co-reaction of K-feldspar and phosphogypsum for the extraction of soluble potassium salts and recovery of SO_2 with reduced CO_2 emission and energy consumption. The results of characterization and reactivity evaluation indicated that the partial melting of K-feldspar and phosphogypsum in the hightemperature co-reaction significantly facilitated the reduction of phosphogypsum to SO_2 and the exchange of K^+(K-feldspar) with Ca^(2+)(CaSO_4 in phosphogypsum). The reaction parameters were systematically investigated with the highest sulfur recovery ratio of ~ 60% and K extraction ratio of ~ 87.7%. This novel methodology possesses an energy consumption reduction of ~ 28% and CO_2 emission reduction of ~ 55% comparing with the present typical commercial technologies for utilization of K-feldspar and the treatment of phosphogypsum.展开更多
基金supported by the "study of Green space management system and protection" of mechanism Economic Development Research Center of State Forestry Administration (ZDWT-2014-3)
文摘China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the government, industries, and society to work together. This paper showed that a mediumehigh economic growth gate, industry structure adjustment, and energy structure adjustment, which are guaranteed under the Five-Year Plan, all contribute to energy saving in China. The economy entered a stable growing phase during the 12 th Five-Year Plan, while the economic growth rate declined to 7.8% from 11.2% in the 11 th Five-Year Plan. Simultaneously, the CO2 emissions growth rate declined from8.32%(2009-2012 mean) to 1.82%(2012-2014 mean). Industrial structure adjustment canceled out nearly one-third of the CO2 emissions caused by economic growth. Under the 13 th Five-Year Plan, China will continue its energy saving efforts on the green development path, with greener quotas, a stricter implementation process, and more key projects.
基金This study was supported by the National Key R&D Program of China[grant number 2017YFB0503901)the National Natural Science Foundation of China[grant numbers 41830109 and 41830966]the Major Scientific and Technological Innovation Projects of Shandong Province[grant number 2018YFJH0901].
文摘The impacts of the meteorological condition and emissions reduction on the aerosol concentration over the Beijing-Tianjin-Hebei(BTH) region during the COVID-19 lockdown were analyzed by conducting three numerical experiments,including one with the meteorological field in 2019 and MEIC-2019(2019 monthly Multi-resolution Emissions Inventory for China),one with the meteorological field in 2020 and MEIC-2019,and one with the meteorological field in 2020 and MEIC-2020,via a WRF-Chem model.The numerical experiments were performed from 3 to 16 February in 2019 and in 2020,during which a severe fog-haze event(3-16 February 2020) occurred in the BTH region,with a simulated maximum daily PM2.5 of 245μg m-3 in Tangshan and 175μg m-3 in Beijing.The results indicate that the daily PM2.5 decreased by 5-150μg m-3 due to the emissions reduction and increased by 10-175 μg m-3 due to the meteorological condition in Beijing,Shijiazhuang,Cangzhou,Handan,Hengshui,Chengde,Zhangjiakou,and Tangshan from 7 to 14 February.For the horizontal distribution,PM2.5 and different aerosol species concentrations from 7 to 14 February 2020 increased compared with those during the same period in 2019,indicating that the accumulation of pollutants caused by the unfavorable meteorological condition offset the decreases caused by the emissions reduction,leading to the high aerosol concentration during the COVID-19 lockdown.
文摘The impact of environmental regulation on technology innovation is a hot spot in current research where a large number of empirical studies are based on Porter Hypothesis(PH). However, there are still controversies in academia about the establishment of "weak" and "narrow" versions of PH. Based on the panel data of application for patent of energy conservation and emission reduction(ECER) technology of Chinese city scale during 2008-2014, comprehensive energy price, pollutant emission, etc., mixed regression model and systematic generalized method of moments method were adopted, respectively,to study the impact of market-oriented and command-and-control policy tool on China's ECER technology innovation. The results show that the environmental regulation hindered the technological innovation in the immediate phase; however, it turned out to be positive in the first-lag phase. Hence, the establishment of "weak" PH is time-bounded. The command-and-control policy tool played a more positive role in promoting technological innovation in the first-lag phase than market-oriented policy tool. Therefore, "narrow" PH is not tenable. The reason is that the main participants of China's ECER technology innovation are state-owned companies and public institutions. Regionally speaking, the impact which command-and-control policy tool has on technological innovation at sight was nonsignificant in the eastern, the central, and the western regions of China whilst market-oriented policy tool had a negative effect. And market-oriented policy tool in the central region had strongest negative effect, which would diminish in the eastern region and become weakest in the western region. This was related to regional energy consumption level and the market economic vitality.
文摘Based on the total-factor energy efficiency framework,this paper calculates China's industrial energy efficiency and CO2 emissions reduction potential from 2000 to 2009 by utilizing the directional distance function and data envelopment analysis.The empirical results show that:China's industrial overall energy efficiency is relatively lower while the emis-sions reduction potential is relatively greater,given the optimum production frontier.Significant indus-trial disparities of energy efficiency and emissions reduction potential exist.Energy efficiency and emis-sions reduction potential significantly show different tendencies of industrial dynamic variation.This paper suggests the Chinese government impose differential carbon taxes,flexibly utilize carbon market mecha-nism,strengthen energy-saving technological R&D,promote the utilization of renewable energy,and strengthen environmental supervision and regulation,so as to improve China's industrial energy efficiency and reduce CO2 emissions.
基金supported by the National Natural Science Foundation of China (4150050140)the Special Fund for Environmental Protection Research in the Public Interest (201509004)
文摘This paper analyzes current urban symbiosis development and application in China, and then conducts a statistical analysis of the emissions reduction of CO2 and CH4 in relation to recovery of iron and steel scraps, waste paper, and waste plastics from 2011 to 2014 using the greenhouse gas(GHG) emission inventory calculation method provided by the IPCC. Results indicate that the cumulative recovery of renewable resources during China's main urban symbiosis development in 2011-2014 was 803.275 Mt, and the amount of iron and steel scraps, waste paper, and waste plastic recovery was the largest, respectively accounting for 62.2%, 18.0%, and 8.2% of total recovery in 2014. In addition, the cumulative emissions reduction of GHGs in relation to recovery of iron and steel scraps, waste paper, and waste plastics in 2011-2014 was27.962 Mt CO2-eq, 954.695 Mt CO2-eq, and 22.502 Mt CO2-eq, respectively, thereby totaling 1005.159 Mt CO2-eq. Results show a remarkable GHG emissions reduction during 2011-2014.
基金supported by Guangdong Major Science and Technology Specific Project, grant number2008A080800022
文摘Current energy conservation and emissions reduction strategies in iron and steel industry were reviewed. Since foundry industry is one of the major source of energy consumption and pollution emission (especially CO 2 ), issues concerning energy-saving and emission-reduction have been raised by governments and the industry. Specialists from around the world carried out multidimensional analyses and evaluation on the potentials in energy conservation and emissions reduction in iron and steel industry, and proposed various kinds of analyzing models. The primary measures mainly focus on the targeted policies formulation and also on clean and highefficient technologies development. The differences and similarities in energy conservation and emission reduction in foundry industry between China and other countries were discussed, while, the future development trend was also pointed out.
文摘Fossil-fuel burning greenhouse gas induced global warming has been recognized as global environmental problems,reduce and ultimately control the energy production in the use of CO_2 emissions, global energy production will be a major challenge.As a highly intensive materials and energy,iron and steel enterprises,need to be invested to produce one ton of steel about two tons of material and 0.7 t of standard coal energy,and while producing two tons of CO_2.Therefore,reducing CO_2 emissions from iron and steel industry has become the focus of the global steel industry.This paper describes an integrated domestic and international measures to control carbon dioxide emissions research progress and future technology trends, with emphasis on the domestic steel industry emissions of carbon dioxide status of technology development and industrialization of implementation of the proposed on this basis,including dry quenching technology, gas,power generation,coal moisture control technology,blast furnace injection plastics technology,the use of coking process for treating municipal waste plastics technology,sintering heat generation,low pressure saturated steam for power generation,metallurgical slag heat recovery technology,coke oven gas hydrogen technology and the other key technologies energy saving technologies,including the development,promotion and popularization of the steel industry in China will be the CO_2 emission reduction technology direction and focus.At this stage,the Chinese steel industry can be improved the energy efficiency and recycling of waste heat and energy,reduce unit GDP,CO_2 emissions;but in the long run,should increase CO_2 capture and storage on the input of technology can possible effective control of the adverse effects of CO_2 emissions.
基金the financial support of the National Natural Science Foundation of China(U2268208)Science and Technology Program of China National Railway Group Co.,Ltd.(N2022×037).
文摘This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life cycle carbon emissions of High-Speed Rail(HSR),battery electric vehicles,conventional internal combustion engine vehicles,battery electric buses,and conventional internal combustion engine buses are analyzed.The life cycle is segmented into vehicle manufacturing,fuel or electricity production,operational,and dismantlingrecycling stages.This analysis is applied to the Beijing-Tianjin intercity transportation system to explore emission reduction strategies.Results indicate that HSR demonstrates significant carbon emission reduction,with an intensity of only 24%-32% compared to private vehicles and 47%-89% compared to buses.Notably,HSR travel for Beijing-Tianjin intercity emits only 24% of private vehicle emissions,demonstrating the emission reduction benefits of transportation structure optimization.Additionally,predictive modeling reveals the potential for carbon emission reduction through energy structure optimization,providing a guideline for the development of effective transportation management systems.
基金National Natural Science Foundation of China(NSFC)“The Impact of R&D Factor Flow on Regional Innovation Performance:Based on the Perspective of Spatial Resource Allocation”(71874084)Jiangsu Province“Six Talent Peaks”High-level Talent Project(JY-009).
文摘An in-depth investigation into the effect of embedment in global value chain(GVC)on energy conservation and emissions reduction is of great significance for scientifically assessing the environmental impact of GVC participation,and promoting high-quality development in China.This paper incorporates GVC embedment,energy consumption and carbon emissions into the same analysis framework for the first time.Based on the WIOD database,this paper theoretically and empirically examines the impact and mechanism of global value chain embeddedness on carbon emission reduction from two dimensions:energy consumption intensity and energy consumption structure.The study found that GVC embedment significantly reduced the industry’s carbon emission intensity;developing economies’embedment in GVC helped reduce their carbon emission intensity,while the effect was not obvious in developed economies.GVC embedment had a significant inhibitory effect on the carbon emissions in both upstream and downstream industries,but not conducive to carbon reduction of lowtech manufacturing.The mechanism test shows that the GVC embedment not only exhibits the dual effects of energy conservation and emissions reduction,but also has a significant impact on carbon emissions by reducing the energy consumption intensity and improving the energy consumption structure.
基金supported by the National Basic Research Program of China[973 program,grant number 2014CB441202]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA05100503]the National Natural Science Foundation of China[grant numbers 41021004,41475137,and 91544219]
文摘The nested-grid capability of the global chemical transport model GEOS-Chem, with a horizontal resolution of 1/4°× 5/16° (latitude x longitude), was used to identify the chemical species whose reductions made the largest contributions to decreases in PM2.s concentrations (fine particulate matter, diameter 〈 2.5μm, defined in this study as the sum of sulfate, nitrate, ammonium, black carbon, and organic carbon aerosols) in Beijing during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. A number of numerical experiments were carried out for the period 15 October-29 November 2014. The model reproduced the observed daily variations of concentrations of PM2.s and gas-phase species (carbon monoxide, nitrogen dioxide, and sulfur dioxide). Simulated PM2.s concentrations decreased by 55.9%-58.5% during the APEC period, compared to other periods in October and November 2014, which agreed closely with measurements. Sensitivity results showed that emissions control measures regarding nitrogen oxides and organic carbon over North China led to the largest reductions in PM2.s concentrations in Beijing during the APEC summit, which led to overall reductions in the PM2.5 concentration of Beijing by 5.7% and 4.6%, respectively. The control of ammonia emissions was found to be able to greatly reduce PM2.5 concentrations in the whole of North China during the APEC meeting.
基金This study was supported by the Fundamental Research Funds for the Central Universities(Grant No.2022YJS053).
文摘As an important transportation infrastructure and transportation backbone in China,high-speed rail(HSR)plays a critical role in promoting the development of green and low-carbon transportation.Calculating the CO_(2) emissions reduction performance of HSR will be conduci v e to pr omote the CO_(2) emissions r eduction w ork of the r ail w ay.Based on the Dalkic HSR CO_(2) emissions r eduction performance model,by adjusting the HSR CO_(2) emission factor(CEF HSR),the annual times of departures(T)and other parameters,this study develops a Chinese HSR CO_(2) emissions reduction performance model.Taking the Beijing-Shanghai HSR as the resear c h object,this study conducts a questionnaire survey to explore the substitution effect and demand effect of HSR on different transportation modes;collects data such as passenger v olume,av era ge electricity use and annual times of departures of the Beijing-Shanghai HSR in 2019;and calculates the CO_(2) emissions reduction performance of the Beijing-Shanghai HSR.This study has two main results:(1)It builds a Chinese HSR CO_(2) emissions reduction performance model based on substitution effect and demand effect.(2)In 2019,the CO_(2) emissions of the Beijing-Shanghai HSR are 2898233.62 t,the CO_(2) emissions reduction performance of the Beijing-Shanghai HSR is 17999482.8 t,the annual CO_(2) emissions of the Beijing-Shanghai line in‘No HSR’case are 7.2 times as in the’HSR’case and the PKT of the HSR is 10.2 g/pkm.Based on the research results,this study proposes three CO_(2) emissions reduction policy suggestions.This study would be helpful for further HSR CO_(2) emissions reduction resear c h and departments related to railway transportation management to make CO_(2) emissions reduction policies.
基金supported by the National Natural Science Foundation of China (41175137)the Climate Change Working Program of MEP in 2015 (CC(2015)-9-3)the Climate Change Project of Beijing in 2014 (ZHCKT4)
文摘The treatment of domestic and industrial wastewater is one of the major sources of CH_4 in the Chinese waste sector. On the basis of statistical data and country-specific emission factors, using IPCC methodology, the characteristics of CH_4 emissions from wastewater treatment in China were analyzed. The driving factors of CH_4 emissions were studied, and the emission trend and reduction potential were predicted and analyzed according to the current situation. Results show that in 2010, CH_4 emissions from the treatment of domestic and industrial wastewater were0.6110 Mt and 1.6237 Mt, respectively. Eight major industries account for more than 92% of emissions, and CH_4 emissions gradually increased from 2005 to 2010. From the controlling management scenario, we predict that in 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will be 1.0136 Mt and 2.3393 Mt, respectively, and the reduction potential will be 0.0763 Mt and 0.2599 Mt, respectively.From 2010 to 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will increase by 66% and 44%, respectively.
基金National Natural Science Foundation of China(41375144,41565009,41675140)the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-13-B06)Youth Innovative Talents Plan for 2016,Inner Mongolia
文摘NH3 is one of the leading causes of grey haze, and one of the main causes of serious ecological imbalances that result in environmental problems such as acid rain and air quality deterioration. At present, excessive fertilizer application greatly intensifies NH3 emissions intensity on farmland. In order to understand status and achievements of research on farmland NH3 emissions, the literature of farmland NH3 emission-related studies was retrieved from SCl journals and the Chinese science citation database. These are summarized with respect to the research progress on NH3 emission factors and emission reduction technologies. The future research direction of field NH3 emission and emission reduction technology need to strengthen the field observation on different soil environment and crop types, and understand the effect of NH3 emission on fertilizer application period and the proportion, temperature and organic fertilizer management in farmland mainly. The research results can provide more information about the factors that influence NH3 emissions. This study offers theoretical guidance and support directed at mitigating farmland NH3 emissions in the future.
基金the financial support from the Postdoctoral Science Foundation of China(2022M720131)Spring Sunshine Collaborative Research Project of the Ministry of Education(202201660)+3 种基金Youth Project of Gansu Natural Science Foundation(22JR5RA542)General Project of Gansu Philosophy and Social Science Foundation(2022YB014)National Natural Science Foundation of China(72034003,72243006,and 71874074)Fundamental Research Funds for the Central Universities(2023lzdxjbkyzx008,lzujbky-2021-sp72)。
文摘Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy.
文摘Under the background of"dual-carbon",green finance is an important way to promote carbon emission reduction and realize the development of a low-carbon economy.Using provincial panel data from 2000 to 2020,this paper constructs a basic regression model to study the"carbon reduction"effect,mechanism of action,and heterogeneity of green finance.The study finds that:the development of green finance significantly inhibits carbon emissions and has an obvious"carbon reduction"effect;green technology innovation has a mediating effect on the carbon emission reduction effect of green finance;in regions with a high level of economic development or a high degree of marketization,the"carbon reduction"effect of green finance is significant.
基金Institute of Technological Research–IPT,Fundcao de AmparoàPesquisa do Estado de Sao PauloBrazil[Process 2019/05840-3]+1 种基金Conselho Nacional de Desenvolvimento Científico e TecnológicoBrazil[Process 167470/2018-3]。
文摘As part of efforts to reduce anthropogenic CO_(2) emissions by the steelmaking industry,this study investigated the direct reduction of industrially produced hematite pellets with H_(2) using the Doehlert experimental design to evaluate the effect of pellet diameter(10.5-16.5 mm),porosity(0.36-0.44),and temperature(600-1200℃).A strong interactive effect between temperature and pellet size was observed,indicating that these variables cannot be considered independently.The increase in temperature and decrease in pellet size considerably favor the reduction rate,while porosity did not show a relevant effect.The change in pellet size during the reduction was negligible,except at elevated temperatures due to crack formation.A considerable decrease in mechanical strength at high temperatures suggests a maximum process operating temperature of 900℃.Good predictive capacity was achieved using the modified grain model to simulate the three consecutive non-catalytic gas-solid reactions,considering different pellet sizes and porosities,changes during the reaction from 800 to 900℃.However,for other temperatures,different mechanisms of structural modifications must be considered in the modeling.These results represent significant contributions to the development of ore pellets for CO_(2)-free steelmaking technology.
文摘This paper reflects the actual effect of China’s environmental protection tax by empirically analyzing the environmental effect of the emission fee, in order to provide reference for China’s environmental tax reform. Based on the traditional environmental “Kuznets” model, the factor of environmental tax is added to verify the effect of environmental governance of environmental tax. The results show that: 1) the improvement of sulfur dioxide emission charge standard can effectively inhibit industrial sulfur dioxide emission, which verifies the existence of environmental effect of pollution levy policies</span><span style="font-family:"">.</span><span style="font-family:""> 2) The improvement of sewage charge standard has better inhibitory effect on sulfur dioxide emission per unit GDP than on sulfur dioxide emission</span><span style="font-family:"">.</span><span style="font-family:""> 3) There is regional heterogeneity in the “emission reduction” effect of sulfur dioxide emission charges in the eastern, central and western regions of China. Pollutants should be taxed differently according to regional differences</span><span style="font-family:"">.</span><span style="font-family:""> 4) Economic growth and sulfur dioxide emission show an inverted “U” shape, China is still in the stage before the inflection point of EKC. Economic growth still takes environmental damage as the cost, and the “emission reduction” effect of technological progress is not ideal, which reveals the urgency of increasing technological development in the field of green environmental protection under the current situation.
文摘In November 2011, the Australian government approved the legislation (Clean Energy Act 2011) to introduce a reduction plan of carbon emissions in Australia. This plan will be implemented from July 2012. This is one of the first accounting studies to investigate the potential impacts of this plan on long-lived asset values and operating cash flows for Australian listed companies. A sample of Australian Securities Exchange (ASX) 200 indexed companies from 2'006 to 2010 is used. Hypotheses are tested based on Heckman's (1979) two-stage approach. Three regression models are developed to examine the association between carbon emissions and asset values/operating cash flows. This study finds that asset values and operating cash flows will be adversely affected, if the reduction plan is implemented. Specifically, this study finds that the book value of long-lived assets will decrease, if listed companies are considered to be emissions-liable. The book value of long-lived assets is further found to be negatively associated with listed companies' carbon emission levels. This study also demonstrates that operating cash flows of emissions-liable companies will be adversely affected. However, this study does not find a relationship between operating cash flows and companies' emission levels. The empirical findings from Australian listed companies provide the evidence that the reduction plan of carbon emissions will adversely affect corporate entities' asset values and operating cash flows. The results further indicate that the magnitude of the impact will be proportional to the companies' emission levels. The implications of these empirical findings for listed companies, for the accounting profession, and for carbon emission regulators are also discussed.
基金the financial support from the National Natural Science Foundation of China(71473010,41701635)
文摘For studying new and renewable energy as a substitute for fossil energy in primary energy consumption and its impact on carbon emissions to cope with economic uncertainties, a multi-sector DSGE model was employed to simulate the dynamic impact on carbon emissions and macroeconomic development. The structural adjustment of energy consumption and the carbon emissions mitigation policy were considered in the model. The simulation results showed that using new and renewable energy instead of fossil energy is an optimal choice for the firms to comply with the regulations of carbon emission mitigation policy. Structural adjustment of energy consumption is the best route to achieve the dual goal of economic development and carbon emission reduction. Unexpected sharp fall in free carbon quota has a negative impact on the economy.
基金Supported by the National Natural Science Foundation of China(21336004)the State Key Research Plan of the Ministry of Science and Technology(2013BAC12B03)
文摘The issues of reducing CO_2 emissions, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenges for sustainable development in energy and the environment. We propose an efficient methodology via the co-reaction of K-feldspar and phosphogypsum for the extraction of soluble potassium salts and recovery of SO_2 with reduced CO_2 emission and energy consumption. The results of characterization and reactivity evaluation indicated that the partial melting of K-feldspar and phosphogypsum in the hightemperature co-reaction significantly facilitated the reduction of phosphogypsum to SO_2 and the exchange of K^+(K-feldspar) with Ca^(2+)(CaSO_4 in phosphogypsum). The reaction parameters were systematically investigated with the highest sulfur recovery ratio of ~ 60% and K extraction ratio of ~ 87.7%. This novel methodology possesses an energy consumption reduction of ~ 28% and CO_2 emission reduction of ~ 55% comparing with the present typical commercial technologies for utilization of K-feldspar and the treatment of phosphogypsum.