In this paper,we propose a new fluorescence emission difference microscopy(FED)technique based on polarization modulation.An electro-optical modulator(EOM)is used to switch the excitation beam between the horizontal a...In this paper,we propose a new fluorescence emission difference microscopy(FED)technique based on polarization modulation.An electro-optical modulator(EOM)is used to switch the excitation beam between the horizontal and vertical polarization states at a high frequency,which leads to solid-and donut-shaped beams after spatial light modulation.Experiment on the fluorescent nanoparticles demonstrates that the proposed method can achieve~λ=4 spatial resolution.Using the proposed system,the dynamic imaging of subcellular structures in living cells over time is achieved.展开更多
基金supported in part by the National Natural Science Foundation of China(61827825,62125504,and 61735017)Major Program of the Natural Science Foundation of Zhejiang Province(LD21F050002)+2 种基金Key Research and Development Program of Zhejiang Province(2020C01116)Zhejiang Lab(2020MC0AE01)China Postdoctoral Science Foundation(BX2021272).
文摘In this paper,we propose a new fluorescence emission difference microscopy(FED)technique based on polarization modulation.An electro-optical modulator(EOM)is used to switch the excitation beam between the horizontal and vertical polarization states at a high frequency,which leads to solid-and donut-shaped beams after spatial light modulation.Experiment on the fluorescent nanoparticles demonstrates that the proposed method can achieve~λ=4 spatial resolution.Using the proposed system,the dynamic imaging of subcellular structures in living cells over time is achieved.