Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combus...Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combustor.To investigate the combustion characteristics of the complex supersonic flame in the RBCC combustor,a new radiation thermometry combined with Levenberg-Marquardt(LM)algorithm and the least squares method was proposed to measure the temperature,emissivity and spectral radiative properties based on the flame emission spectrum.In-situ measurements of the flame temperature,emissivity and spectral radiative properties were carried out in the RBCC direct-connected test bench with laser-induced plasma combustion enhancement(LIPCE)and without LIPCE.The flame average temperatures at fuel global equivalence ratio(a)of 1.0b and 0.6 with LIPCE were 4.51%and 2.08%higher than those without LIPCE.The flame combustion oscillation of kerosene tended to be stable in the recirculation zone of cavity with the thermal and chemical effects of laser induced plasma.The differences of flame temperature at a=1.0b and 0.6 were 503 K and 523 K with LIPCE,which were 20.07%and42.64%lower than those without LIPCE.The flame emissivity with methane assisted ignition was 80.46%lower than that without methane assisted ignition,due to the carbon-hydrogen ratio of kerosene was higher than that of methane.The spectral emissivities at 600 nm with LIPCE were 1.25%,22.2%,and 4.22%lower than those without LIPCE at a=1.0a(with methane assisted ignition),1.0b(without methane assisted ignition)and 0.6.The effect of concentration in the emissivity was removed by normalization to analyze the flame radiative properties in the RBCC combustor chamber.The maximum differences of flame normalized emissivity were 50.91%without LIPCE and 27.53%with LIPCE.The flame radiative properties were stabilized under the thermal and chemical effects of laser induced plasma at a=0.6.展开更多
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ...Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.展开更多
Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism....Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.展开更多
We present in this paper a numerical study of the validity limit of the geometrical optics approximation compared with a differential method which is established according to rigorous formalisms based on the electroma...We present in this paper a numerical study of the validity limit of the geometrical optics approximation compared with a differential method which is established according to rigorous formalisms based on the electromagnetic theory. The precedent studies show that this method is adapted to the study of diffraction by periodic rough surfaces. We determine by two methods the emissivity of gold and tungsten for surfaces with a rectangular or sinusoidal profile, for a wavelength equal to 0.55 microns. The monochromatic directional emissivity of these surfaces clearly depends on the angle of incidence, the surface profile, height, period and the nature of the material. We perform our calculations by a method of coupled wave analysis (CWA) and a geometric optics method (GOA). The latter method is theoretically valid only when the dimensions of the cavities are very large compared to the wavelength, while the CWA is theoretically correct whatever these dimensions. The main purpose of this work is to investigate the validity limit of GOA compared with CWA. The obtained results for a fixed height of the grating, allowed us to delimit the validity domain of the optic geometrical approximation for the treated cases. Finally, the agreement between the emissivity calculated by the differential method and that given on the basis of the homogenization theory is satisfactory when the period is much smaller than the wavelength.展开更多
Spray-drying was used to produce the high emissivity NiCr2O4 powders with a spinel structure. Preliminary investigations focused on fabricating the high emissivity powders for infrared radiation coatings and finding t...Spray-drying was used to produce the high emissivity NiCr2O4 powders with a spinel structure. Preliminary investigations focused on fabricating the high emissivity powders for infrared radiation coatings and finding the relationship between microstructure and emissivity. The NiCr2O4 powders were characterized for composition, microstructure, and infrared emissivity by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared radiant instrument, and Fourier transform infrared spectra (FT-IR). Thermogravimetry and differential thermal analysis show that the appropriate baking temperature for NiCr2O4 powder preparation is about 1200?C. The emissivity measurement and FT-IR spectra show that, because of the special spinel structure, the NiCr2O4 powders have a high emissivity about 0.91. Spray-drying is a suitable method to produce the high emissivity ceramic powders.展开更多
The infrared transmittance and emissivity of heat-insulating coatings pigmented with various structural particles were studied using Kubelka-Munk theory and Mie theory. The primary design purpose was to obtain the low...The infrared transmittance and emissivity of heat-insulating coatings pigmented with various structural particles were studied using Kubelka-Munk theory and Mie theory. The primary design purpose was to obtain the low transmittance and low emissivity coatings to reduce the heat transfer by thermal radiation for high-temperature applications. In the case of silica coating layers constituted with various structural titania particles (solid, hollow, and core-shell spherical), the dependence of transmittance and emissivity of the coating layer on the particle structure and the layer thickness was investigated and optimized. The results indicate that the coating pigmented with core-shell titania particles exhibits a lower infrared transmittance and a lower emissivity value than that with other structural particles and is suitable to radiative heat-insulating applications.展开更多
In general, the dependence of the logarithm of the emissivity upon wavelength is usually used in the treatment of data measured by multi-wavelength pyrometer. In this paper, the suitability of this expression for diff...In general, the dependence of the logarithm of the emissivity upon wavelength is usually used in the treatment of data measured by multi-wavelength pyrometer. In this paper, the suitability of this expression for different materials has been examined. Further more, an effective method for automatically searching the mathematical model between emissivity and wavelength has been procsed. The calculated results show that the accuracy is improved by using this data treatment method.展开更多
A new coating on lining in industrial furnace for energy saving has been developed. Properties and microstructure of the coatings were revealed by emissivity instrument,X-ray diffraction (XRD),transmission electron ...A new coating on lining in industrial furnace for energy saving has been developed. Properties and microstructure of the coatings were revealed by emissivity instrument,X-ray diffraction (XRD),transmission electron microscope (TEM) and scanning electron microscope (SEM),respectively. The result indicates that the emissivity of coatings is higher than 0.90 and the thickness of coatings is about 200 μm. ZrO2,Cr2O3 and SiC in the coating benefit practical applications of coatings at high temperature with durable high emissivity and the continuous structure between the coatings and the substrate makes the coatings high cohesion and excellent adhesion for both specimens with and without sintering at high temperature. Result from laboratory experiment shows that the heating speed of specimen with coating is higher than that of controlled specimen and the temperature increases 30°C during the heating. The average temperature drop of specimen with coatings has a 13.5% improvement in the cooling speed. The application of coatings on the checker brick in a blast furnace of 1750m^3 indicates that the coating causes the blast temperature to an average increase of 28°C,reduces the fluctuation of blast temperature before the blowing-in and leads to a fuel saving of 10% approximately.展开更多
An accurate accounting of land surface emissivity(ε) is important both for the retrieval of surface temperatures and the calculation of the longwave surface energy budgets.Since ε is one of the important parameteriz...An accurate accounting of land surface emissivity(ε) is important both for the retrieval of surface temperatures and the calculation of the longwave surface energy budgets.Since ε is one of the important parameterizations in land surface models(LSMs),accurate accounting also improves the accuracy of surface temperatures and sensible heat fluxes simulated by LSMs.In order to obtain an accurate emissivity,this paper focuses on estimating ε from data collected in the hinterland of Taklimakan Desert by two different methods.In the first method,ε was derived from the surface broadband emissivity in the 8–14 μm thermal infrared atmospheric window,which was determined from spectral radiances observed by field measurements using a portable Fourier transform infrared spectrometer,the mean ε being 0.9051.The second method compared the observed and calculated heat fluxes under nearneutral atmospheric stability and estimated ε indirectly by minimizing the root-mean-square difference between them.The result of the second method found a mean value of 0.9042,which is consistent with the result by the first method.Although the two methods recover ε from different field experiments and data,the difference of meanvalues is 0.0009.The first method is superior to the indirect method,and is also more convenient.展开更多
NiCr2O4(NCO)spinel composites with different Mn/Ni atomic ratios(Mn/Ni=0.05,0.10,0.15,and 0.20)were synthesized via solid state reaction method.Phase compositions and microstructure of samples were characterized b...NiCr2O4(NCO)spinel composites with different Mn/Ni atomic ratios(Mn/Ni=0.05,0.10,0.15,and 0.20)were synthesized via solid state reaction method.Phase compositions and microstructure of samples were characterized by X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The TG-DSC curves showed that the appropriate baking temperature for Mn-doped NCO spinel preparation was approximately 1 320℃.X-ray diffraction patterns exhibited the formation of NCO spinel with Fd-3m space group.Valence state of the Mn ions was determined from 2p and 3s X-ray photoelectron spectra.Manganese ions were mostly in divalent and trivalent states,and the ratio of Mn^2+/Mn^3+was 0.78-0.98.Fourier transform infrared spectroscopy(FTIR)was used to analyze the spectral emissivity of Mn doped NCO spinel.It was revealed that the infrared emissivity of Mn-doped NCO spinel in 1.8-5μm could be significantly enhanced with increasing content of Mn^2+,reaching as high as 0.9398.Mn-doped NCO spinel showed excellent radiation performance and good prospect in high emissivity applications in the temperature range of 800-1 200℃.展开更多
According to the basic infrared stealth mechanism of low infrared emissivity powders,the ZAO powder materials were prepared by liquid coprecipitation method,and the starting materials were Zn( NO3) 6H2O and Al( NO3) 3...According to the basic infrared stealth mechanism of low infrared emissivity powders,the ZAO powder materials were prepared by liquid coprecipitation method,and the starting materials were Zn( NO3) 6H2O and Al( NO3) 39H2O. The process parameters were obtained,and the relationship between technology parameters and infrared emissivity was investigated. The temperature of thermal treatment,crystal structure and surface micrograph of ZAO powder was analyzed by the help of TG-DTA,XRD and SEM. The infrared stealth performance of ZAO powder was studied by IR-2 emissivity spectroscopy. Results showed that the infrared emissivity was the lowest when pH was 8. 0,calcination temperature was 1100 ℃,calcination time was 2 h,and the Al2O3doping content was 3% ( mass percentage) . The crystal structure of doped ZAO powder was lead-zinc, and there exists distortion of crystal lattice in nanocrystalline ZnO. The average particle size was 10 μm. The lowest infrared emissivity reached to 0. 61 at between 8 μm and 14 μm. It means that the ZAO powders will be excellent infrared stealthy materials.展开更多
Air plasma spraying (APS) was used to produce high emissivity coatings with a NiCr204 spinel structure. The relationship between the emissivity and the crystal structure was investigated. X-ray diffraction (XRD) a...Air plasma spraying (APS) was used to produce high emissivity coatings with a NiCr204 spinel structure. The relationship between the emissivity and the crystal structure was investigated. X-ray diffraction (XRD) analyses show that NiCr204 spinel has been fabri- cated with the space group Fd3m. Scanning electron microscope (SEM) photographs show that the coating consists of a laminated structure with homogeneous grains and high porosity because of the unique feature of plasma spraying. The emissivity measurement and Fourier transformation infrared radiation (FT-IR) spectra show that NiCr204 has a high emissivity of about 0.91 because of its special spinel structure APS is a suitable method to produce high emissivity coatings.展开更多
The Geometrical Optics(GO)approach and the FAST Emissivity Model(FASTEM)are widely used to estimate the surface radiative components in atmospheric radiative transfer simulations,but their applications are limited in ...The Geometrical Optics(GO)approach and the FAST Emissivity Model(FASTEM)are widely used to estimate the surface radiative components in atmospheric radiative transfer simulations,but their applications are limited in specific conditions.In this study,a two-scale reflectivity model(TSRM)and a two-scale emissivity model(TSEM)are developed from the two-scale roughness theory.Unlike GO which only computes six non-zero elements in the reflectivity matrix,The TSRM includes 16 elements of Stokes reflectivity matrix which are important for improving radiative transfer simulation accuracy in a scattering atmosphere.It covers the frequency range from L-to W-bands.The dependences of all TSRM elements on zenith angle,wind speed,and frequency are derived and analyzed in details.For a set of downwelling radiances in microwave frequencies,the reflected upwelling brightness temperature(BTs)are calculated from both TSRM and GO and compared for analyzing their discrepancies.The TSRM not only includes the effects of GO but also accounts for the small-scale Bragg scattering effect in an order of several degrees in Kelvins in brightness temperature.Also,the third and fourth components of the Stokes vector can only be produced from the TSRM.For the emitted radiation,BT differences in vertical polarization between a TSEM and FASTEM are generally less than 5 K when the satellite zenith angle is less than 40°,whereas those for the horizontal component can be quite significant,greater than 20 K.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.52276185,52276189 and 51976057)the Fundamental Research Funds for the Central Universities (Grant No.2021MS126)+1 种基金the Natural Science Foundation of Jiangsu Province (Grant No.BK20231209)the Proof-of-Concept Project of Zhongguancun Open Laboratory (Grant No.20220981113)。
文摘Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combustor.To investigate the combustion characteristics of the complex supersonic flame in the RBCC combustor,a new radiation thermometry combined with Levenberg-Marquardt(LM)algorithm and the least squares method was proposed to measure the temperature,emissivity and spectral radiative properties based on the flame emission spectrum.In-situ measurements of the flame temperature,emissivity and spectral radiative properties were carried out in the RBCC direct-connected test bench with laser-induced plasma combustion enhancement(LIPCE)and without LIPCE.The flame average temperatures at fuel global equivalence ratio(a)of 1.0b and 0.6 with LIPCE were 4.51%and 2.08%higher than those without LIPCE.The flame combustion oscillation of kerosene tended to be stable in the recirculation zone of cavity with the thermal and chemical effects of laser induced plasma.The differences of flame temperature at a=1.0b and 0.6 were 503 K and 523 K with LIPCE,which were 20.07%and42.64%lower than those without LIPCE.The flame emissivity with methane assisted ignition was 80.46%lower than that without methane assisted ignition,due to the carbon-hydrogen ratio of kerosene was higher than that of methane.The spectral emissivities at 600 nm with LIPCE were 1.25%,22.2%,and 4.22%lower than those without LIPCE at a=1.0a(with methane assisted ignition),1.0b(without methane assisted ignition)and 0.6.The effect of concentration in the emissivity was removed by normalization to analyze the flame radiative properties in the RBCC combustor chamber.The maximum differences of flame normalized emissivity were 50.91%without LIPCE and 27.53%with LIPCE.The flame radiative properties were stabilized under the thermal and chemical effects of laser induced plasma at a=0.6.
文摘Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.
基金supported by the Research Project of the Shanghai Health Commission,No.2020YJZX0111(to CZ)the National Natural Science Foundation of China,Nos.82021002(to CZ),82272039(to CZ),82171252(to FL)+1 种基金a grant from the National Health Commission of People’s Republic of China(PRC),No.Pro20211231084249000238(to JW)Medical Innovation Research Project of Shanghai Science and Technology Commission,No.21Y11903300(to JG).
文摘Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
文摘We present in this paper a numerical study of the validity limit of the geometrical optics approximation compared with a differential method which is established according to rigorous formalisms based on the electromagnetic theory. The precedent studies show that this method is adapted to the study of diffraction by periodic rough surfaces. We determine by two methods the emissivity of gold and tungsten for surfaces with a rectangular or sinusoidal profile, for a wavelength equal to 0.55 microns. The monochromatic directional emissivity of these surfaces clearly depends on the angle of incidence, the surface profile, height, period and the nature of the material. We perform our calculations by a method of coupled wave analysis (CWA) and a geometric optics method (GOA). The latter method is theoretically valid only when the dimensions of the cavities are very large compared to the wavelength, while the CWA is theoretically correct whatever these dimensions. The main purpose of this work is to investigate the validity limit of GOA compared with CWA. The obtained results for a fixed height of the grating, allowed us to delimit the validity domain of the optic geometrical approximation for the treated cases. Finally, the agreement between the emissivity calculated by the differential method and that given on the basis of the homogenization theory is satisfactory when the period is much smaller than the wavelength.
文摘Spray-drying was used to produce the high emissivity NiCr2O4 powders with a spinel structure. Preliminary investigations focused on fabricating the high emissivity powders for infrared radiation coatings and finding the relationship between microstructure and emissivity. The NiCr2O4 powders were characterized for composition, microstructure, and infrared emissivity by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared radiant instrument, and Fourier transform infrared spectra (FT-IR). Thermogravimetry and differential thermal analysis show that the appropriate baking temperature for NiCr2O4 powder preparation is about 1200?C. The emissivity measurement and FT-IR spectra show that, because of the special spinel structure, the NiCr2O4 powders have a high emissivity about 0.91. Spray-drying is a suitable method to produce the high emissivity ceramic powders.
文摘The infrared transmittance and emissivity of heat-insulating coatings pigmented with various structural particles were studied using Kubelka-Munk theory and Mie theory. The primary design purpose was to obtain the low transmittance and low emissivity coatings to reduce the heat transfer by thermal radiation for high-temperature applications. In the case of silica coating layers constituted with various structural titania particles (solid, hollow, and core-shell spherical), the dependence of transmittance and emissivity of the coating layer on the particle structure and the layer thickness was investigated and optimized. The results indicate that the coating pigmented with core-shell titania particles exhibits a lower infrared transmittance and a lower emissivity value than that with other structural particles and is suitable to radiative heat-insulating applications.
文摘In general, the dependence of the logarithm of the emissivity upon wavelength is usually used in the treatment of data measured by multi-wavelength pyrometer. In this paper, the suitability of this expression for different materials has been examined. Further more, an effective method for automatically searching the mathematical model between emissivity and wavelength has been procsed. The calculated results show that the accuracy is improved by using this data treatment method.
基金the Innovation Fund for Technology Based Firms (No06C26213701371)Natural Science Foundation of Shandong Province in China (NoY2006F26)
文摘A new coating on lining in industrial furnace for energy saving has been developed. Properties and microstructure of the coatings were revealed by emissivity instrument,X-ray diffraction (XRD),transmission electron microscope (TEM) and scanning electron microscope (SEM),respectively. The result indicates that the emissivity of coatings is higher than 0.90 and the thickness of coatings is about 200 μm. ZrO2,Cr2O3 and SiC in the coating benefit practical applications of coatings at high temperature with durable high emissivity and the continuous structure between the coatings and the substrate makes the coatings high cohesion and excellent adhesion for both specimens with and without sintering at high temperature. Result from laboratory experiment shows that the heating speed of specimen with coating is higher than that of controlled specimen and the temperature increases 30°C during the heating. The average temperature drop of specimen with coatings has a 13.5% improvement in the cooling speed. The application of coatings on the checker brick in a blast furnace of 1750m^3 indicates that the coating causes the blast temperature to an average increase of 28°C,reduces the fluctuation of blast temperature before the blowing-in and leads to a fuel saving of 10% approximately.
基金sponsored by the National Natural Science Foundation of China (Grant No. 41265002, 41130641, and 41175140)the Special Fund for Meteorology-scientific Research in the Public Interest of China (Grant No. GYHY201306066)
文摘An accurate accounting of land surface emissivity(ε) is important both for the retrieval of surface temperatures and the calculation of the longwave surface energy budgets.Since ε is one of the important parameterizations in land surface models(LSMs),accurate accounting also improves the accuracy of surface temperatures and sensible heat fluxes simulated by LSMs.In order to obtain an accurate emissivity,this paper focuses on estimating ε from data collected in the hinterland of Taklimakan Desert by two different methods.In the first method,ε was derived from the surface broadband emissivity in the 8–14 μm thermal infrared atmospheric window,which was determined from spectral radiances observed by field measurements using a portable Fourier transform infrared spectrometer,the mean ε being 0.9051.The second method compared the observed and calculated heat fluxes under nearneutral atmospheric stability and estimated ε indirectly by minimizing the root-mean-square difference between them.The result of the second method found a mean value of 0.9042,which is consistent with the result by the first method.Although the two methods recover ε from different field experiments and data,the difference of meanvalues is 0.0009.The first method is superior to the indirect method,and is also more convenient.
基金Funded by the Scientific and Technological Research Projects for Education Department of Hubei Province(Q20161407)
文摘NiCr2O4(NCO)spinel composites with different Mn/Ni atomic ratios(Mn/Ni=0.05,0.10,0.15,and 0.20)were synthesized via solid state reaction method.Phase compositions and microstructure of samples were characterized by X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The TG-DSC curves showed that the appropriate baking temperature for Mn-doped NCO spinel preparation was approximately 1 320℃.X-ray diffraction patterns exhibited the formation of NCO spinel with Fd-3m space group.Valence state of the Mn ions was determined from 2p and 3s X-ray photoelectron spectra.Manganese ions were mostly in divalent and trivalent states,and the ratio of Mn^2+/Mn^3+was 0.78-0.98.Fourier transform infrared spectroscopy(FTIR)was used to analyze the spectral emissivity of Mn doped NCO spinel.It was revealed that the infrared emissivity of Mn-doped NCO spinel in 1.8-5μm could be significantly enhanced with increasing content of Mn^2+,reaching as high as 0.9398.Mn-doped NCO spinel showed excellent radiation performance and good prospect in high emissivity applications in the temperature range of 800-1 200℃.
基金Sponsored by the Young Academic Backbone Funding Schemes of Harbin Normal University (Grant No KGB200906)China Postdoctoral Science Foundation( Grant No20100471069)Science and Technology Research Projects of Heilongjiang Provincial Education Department (Grant No11551119)
文摘According to the basic infrared stealth mechanism of low infrared emissivity powders,the ZAO powder materials were prepared by liquid coprecipitation method,and the starting materials were Zn( NO3) 6H2O and Al( NO3) 39H2O. The process parameters were obtained,and the relationship between technology parameters and infrared emissivity was investigated. The temperature of thermal treatment,crystal structure and surface micrograph of ZAO powder was analyzed by the help of TG-DTA,XRD and SEM. The infrared stealth performance of ZAO powder was studied by IR-2 emissivity spectroscopy. Results showed that the infrared emissivity was the lowest when pH was 8. 0,calcination temperature was 1100 ℃,calcination time was 2 h,and the Al2O3doping content was 3% ( mass percentage) . The crystal structure of doped ZAO powder was lead-zinc, and there exists distortion of crystal lattice in nanocrystalline ZnO. The average particle size was 10 μm. The lowest infrared emissivity reached to 0. 61 at between 8 μm and 14 μm. It means that the ZAO powders will be excellent infrared stealthy materials.
文摘Air plasma spraying (APS) was used to produce high emissivity coatings with a NiCr204 spinel structure. The relationship between the emissivity and the crystal structure was investigated. X-ray diffraction (XRD) analyses show that NiCr204 spinel has been fabri- cated with the space group Fd3m. Scanning electron microscope (SEM) photographs show that the coating consists of a laminated structure with homogeneous grains and high porosity because of the unique feature of plasma spraying. The emissivity measurement and Fourier transformation infrared radiation (FT-IR) spectra show that NiCr204 has a high emissivity of about 0.91 because of its special spinel structure APS is a suitable method to produce high emissivity coatings.
基金funded by the National Key Research and Development Program(Grant No.2022YFC3004200)the National Key Research and Development Program of China(Grant No.2021YFB3900400)+1 种基金Hunan Provincial Natural Science Foundation of China(Grant No.2021JC0009)the National Natural Science Foundation of China(Grant No.U2142212).
文摘The Geometrical Optics(GO)approach and the FAST Emissivity Model(FASTEM)are widely used to estimate the surface radiative components in atmospheric radiative transfer simulations,but their applications are limited in specific conditions.In this study,a two-scale reflectivity model(TSRM)and a two-scale emissivity model(TSEM)are developed from the two-scale roughness theory.Unlike GO which only computes six non-zero elements in the reflectivity matrix,The TSRM includes 16 elements of Stokes reflectivity matrix which are important for improving radiative transfer simulation accuracy in a scattering atmosphere.It covers the frequency range from L-to W-bands.The dependences of all TSRM elements on zenith angle,wind speed,and frequency are derived and analyzed in details.For a set of downwelling radiances in microwave frequencies,the reflected upwelling brightness temperature(BTs)are calculated from both TSRM and GO and compared for analyzing their discrepancies.The TSRM not only includes the effects of GO but also accounts for the small-scale Bragg scattering effect in an order of several degrees in Kelvins in brightness temperature.Also,the third and fourth components of the Stokes vector can only be produced from the TSRM.For the emitted radiation,BT differences in vertical polarization between a TSEM and FASTEM are generally less than 5 K when the satellite zenith angle is less than 40°,whereas those for the horizontal component can be quite significant,greater than 20 K.