Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitte...Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitter signals in a wide range of signal-to-noise ratio (SNR), and radial basis probability neural network (RBPNN) was used to recognize different radar emitter signals. Complexity features, including Lempel-Ziv complexity (LZC) and correlation dimension (CD), can measure the complexity and irregularity of signals, which mirrors the intra-pulse modulation laws of radar emitter signals. In an experiment, LZC and CD features of 10 typical radar emitter signals were extracted and RBPNN was applied to identify the 10 radar emitter signals. Simulation results show that the proposed approach is effective and has good application values because average accurate recognition rate is high when SNR varies in a wide range.展开更多
This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select t...This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.展开更多
Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition...Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition method based on a small amount of labeled data is developed.First,a small amount of labeled data are randomly sampled by using the bootstrap method,loss functions for three common deep learning net-works are improved,the uniform distribution and cross-entropy function are combined to reduce the overconfidence of softmax classification.Subsequently,the dataset obtained after sam-pling is adopted to train three improved networks so as to build the initial model.In addition,the unlabeled data are preliminarily screened through dynamic time warping(DTW)and then input into the initial model trained previously for judgment.If the judg-ment results of two or more networks are consistent,the unla-beled data are labeled and put into the labeled data set.Lastly,the three network models are input into the labeled dataset for training,and the final model is built.As revealed by the simula-tion results,the semi-supervised learning method adopted in this paper is capable of exploiting a small amount of labeled data and basically achieving the accuracy of labeled data recognition.展开更多
A novel algorithm that combines the generalized labeled multi-Bernoulli(GLMB) filter with signal features of the unknown emitter is proposed in this paper. In complex electromagnetic environments, emitter features(EFs...A novel algorithm that combines the generalized labeled multi-Bernoulli(GLMB) filter with signal features of the unknown emitter is proposed in this paper. In complex electromagnetic environments, emitter features(EFs) are often unknown and time-varying. Aiming at the unknown feature problem, we propose a method for identifying EFs based on dynamic clustering of data fields. Because EFs are time-varying and the probability distribution is unknown, an improved fuzzy C-means algorithm is proposed to calculate the correlation coefficients between the target and measurements, to approximate the EF likelihood function. On this basis, the EF likelihood function is integrated into the recursive GLMB filter process to obtain the new prediction and update equations.Simulation results show that the proposed method can improve the tracking performance of multiple targets,especially in heavy clutter environments.展开更多
To cope with the problem of emitter identification caused by the radar words' uncertainty of measured multi-function radar emitters, this paper proposes a new identification method based on stochastic syntax-directed...To cope with the problem of emitter identification caused by the radar words' uncertainty of measured multi-function radar emitters, this paper proposes a new identification method based on stochastic syntax-directed translation schema(SSDTS). This method, which is deduced from the syntactic modeling of multi-function radars, considers the probabilities of radar phrases appearance in different radar modes as well as the probabilities of radar word errors occurrence in different radar phrases. It concludes that the proposed method can not only correct the defective radar words by using the stochastic translation schema, but also identify the real radar phrases and working modes of measured emitters concurrently. Furthermore, a number of simulations are presented to demonstrate the identification capability and adaptability of the SSDTS algorithm.The results show that even under the condition of the defective radar words distorted by noise,the proposed algorithm can infer the phrases, work modes and types of measured emitters correctly.展开更多
基金TheNationalDefenceFoundation (No .NEWL5 14 35QT2 2 0 4 0 1) ,theDoctoralInnovationFoundationofSWJTU ,andtheMainTeacherSponsorProgramoftheMinistryofEducationofChina (No .6 5 ,2 0 0 0 )
文摘Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitter signals in a wide range of signal-to-noise ratio (SNR), and radial basis probability neural network (RBPNN) was used to recognize different radar emitter signals. Complexity features, including Lempel-Ziv complexity (LZC) and correlation dimension (CD), can measure the complexity and irregularity of signals, which mirrors the intra-pulse modulation laws of radar emitter signals. In an experiment, LZC and CD features of 10 typical radar emitter signals were extracted and RBPNN was applied to identify the 10 radar emitter signals. Simulation results show that the proposed approach is effective and has good application values because average accurate recognition rate is high when SNR varies in a wide range.
文摘This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.
文摘Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition method based on a small amount of labeled data is developed.First,a small amount of labeled data are randomly sampled by using the bootstrap method,loss functions for three common deep learning net-works are improved,the uniform distribution and cross-entropy function are combined to reduce the overconfidence of softmax classification.Subsequently,the dataset obtained after sam-pling is adopted to train three improved networks so as to build the initial model.In addition,the unlabeled data are preliminarily screened through dynamic time warping(DTW)and then input into the initial model trained previously for judgment.If the judg-ment results of two or more networks are consistent,the unla-beled data are labeled and put into the labeled data set.Lastly,the three network models are input into the labeled dataset for training,and the final model is built.As revealed by the simula-tion results,the semi-supervised learning method adopted in this paper is capable of exploiting a small amount of labeled data and basically achieving the accuracy of labeled data recognition.
基金Project supported by the National Major Research and Development Project of China (No. 2018YFE0206500)the National Natural Science Foundation of China (No. 62071140)+1 种基金the International Scientific and Technological Cooperation Program of China (No. 2015DFR10220)the Technology Foundation for Basic Enhancement Plan,China (No. 2021-JCJQ-JJ-0301)。
文摘A novel algorithm that combines the generalized labeled multi-Bernoulli(GLMB) filter with signal features of the unknown emitter is proposed in this paper. In complex electromagnetic environments, emitter features(EFs) are often unknown and time-varying. Aiming at the unknown feature problem, we propose a method for identifying EFs based on dynamic clustering of data fields. Because EFs are time-varying and the probability distribution is unknown, an improved fuzzy C-means algorithm is proposed to calculate the correlation coefficients between the target and measurements, to approximate the EF likelihood function. On this basis, the EF likelihood function is integrated into the recursive GLMB filter process to obtain the new prediction and update equations.Simulation results show that the proposed method can improve the tracking performance of multiple targets,especially in heavy clutter environments.
基金supported by the National Natural Science Foundation of China (No. 61002026)
文摘To cope with the problem of emitter identification caused by the radar words' uncertainty of measured multi-function radar emitters, this paper proposes a new identification method based on stochastic syntax-directed translation schema(SSDTS). This method, which is deduced from the syntactic modeling of multi-function radars, considers the probabilities of radar phrases appearance in different radar modes as well as the probabilities of radar word errors occurrence in different radar phrases. It concludes that the proposed method can not only correct the defective radar words by using the stochastic translation schema, but also identify the real radar phrases and working modes of measured emitters concurrently. Furthermore, a number of simulations are presented to demonstrate the identification capability and adaptability of the SSDTS algorithm.The results show that even under the condition of the defective radar words distorted by noise,the proposed algorithm can infer the phrases, work modes and types of measured emitters correctly.