BACKGROUND Acute pancreatitis(AP),as a common acute abdomen disease,has a high incidence rate worldwide and is often accompanied by severe complications.Negative emotions lead to increased secretion of stress hormones...BACKGROUND Acute pancreatitis(AP),as a common acute abdomen disease,has a high incidence rate worldwide and is often accompanied by severe complications.Negative emotions lead to increased secretion of stress hormones,elevated blood sugar levels,and enhanced insulin resistance,which in turn increases the risk of AP and significantly affects the patient's quality of life.Therefore,exploring the intervention effects of narrative nursing programs on the negative emotions of patients with AP is not only helpful in alleviating psychological stress and improving quality of life but also has significant implications for improving disease outcomes and prognosis.AIM To construct a narrative nursing model for negative emotions in patients with AP and verify its efficacy in application.METHODS Through Delphi expert consultation,a narrative nursing model for negative emotions in patients with AP was constructed.A non-randomized quasi-experimental study design was used in this study.A total of 92 patients with AP with negative emotions admitted to a tertiary hospital in Nantong City of Jiangsu Province,China from September 2022 to August 2023 were recruited by convenience sampling,among whom 46 patients admitted from September 2022 to February 2023 were included in the observation group,and 46 patients from March to August 2023 were selected as control group.The observation group received narrative nursing plan,while the control group was given with routine nursing.Self-rating anxiety scale(SAS),self-rating depression scale(SDS),positive and negative affect scale(PANAS),caring behavior scale,patient satisfaction scale and 36-item short form health survey questionnaire(SF-36)were used to evaluate their emotions,satisfaction and caring behaviors in the two groups on the day of discharge,1-and 3-month following discharge.RESULTS According to the inclusion and exclusion criteria,a total of 45 cases in the intervention group and 44 cases in the control group eventually recruited and completed in the study.On the day of discharge,the intervention group showed significantly lower scores of SAS,SDS and negative emotion(28.57±4.52 vs 17.4±4.44,P<0.001),whereas evidently higher outcomes in the positive emotion score,Caring behavior scale score and satisfaction score compared to the control group(P<0.05).Repeated measurement analysis of variance showed that significant between-group differences were found in time effect,inter-group effect and interaction effect of SAS and PANAS scores as well as in time effect and inter-group effect of SF-36 scores(P<0.05);the SF-36 scores of two groups at 3 months after discharge were higher than those at 1 month after discharge(P<0.05).CONCLUSION The application of narrative nursing protocols has demonstrated significant effectiveness in alleviating anxiety,ameliorating negative emotions,and enhancing satisfaction among patients with AP.展开更多
Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about pos...Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.展开更多
The relapse of methamphetamine (meth) is associated with decision-making dysfunction. The present study aims to investigate theimpact of different emotions on the decision-making behavior of meth users. We used 2 (gen...The relapse of methamphetamine (meth) is associated with decision-making dysfunction. The present study aims to investigate theimpact of different emotions on the decision-making behavior of meth users. We used 2 (gender: male, female) × 3 (emotion:positive, negative, neutral) × 5 (block: 1, 2, 3, 4, 5) mixed experiment design. The study involved 168 meth users who weredivided into three groups: positive emotion, negative emotion and neutral emotion group, and tested by the emotional IowaGambling Task (IGT). The IGT performance of male users exhibited a decreasing trend from Block 1 to Block 3. Female methusers in positive emotion had the best performance in IGT than females in the other two groups. In positive emotion, the IGTperformance of female meth users was significantly better than that of men. Female meth users in positive emotion had betterdecision-making than those in negative or neutral emotion. Female meth users in positive emotion had better decision-makingperformance than males in positive emotion. In negative and neutral emotions, there was no significant gender difference indecision-making.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances.This paper investigates the issue of strategy interaction and behavioral decision-ma...The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances.This paper investigates the issue of strategy interaction and behavioral decision-making among game players in simulated confrontation scenarios within a random interference environment.It considers the possible risks that random disturbances may pose to the autonomous decision-making of game players,as well as the impact of participants’manipulative behaviors on the state changes of the players.A nonlinear mathematical model is established to describe the strategy decision-making process of the participants in this scenario.Subsequently,the strategy selection interaction relationship,strategy evolution stability,and dynamic decision-making process of the game players are investigated and verified by simulation experiments.The results show that maneuver-related parameters and random environmental interference factors have different effects on the selection and evolutionary speed of the agent’s strategies.Especially in a highly uncertain environment,even small information asymmetry or miscalculation may have a significant impact on decision-making.This also confirms the feasibility and effectiveness of the method proposed in the paper,which can better explain the behavioral decision-making process of the agent in the interaction process.This study provides feasibility analysis ideas and theoretical references for improving multi-agent interactive decision-making and the interpretability of the game system model.展开更多
Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the i...Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: M.A.R.I.E. enables the rational, quantified measurement of Emotional Visual Acuity (EVA) in an individual observer and a population aged 20 to 70 years. Meanwhile, it can measure the range and intensity of expressed emotions through three Face- Tests, quantify the performance of a sample of 204 observers with hypernormal measures of cognition, “thymia” (defined elsewhere), and low levels of anxiety, and perform analysis of the six primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual- Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Decision-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”, 6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Fingerprint-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.展开更多
Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the i...Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: With M.A.R.I.E. enable a rational quantified measurement of Emotional-Visual-Acuity (EVA) of 1) a) an individual observer, b) in a population aged 20 to 70 years old, 2) measure the range and intensity of expressed emotions by 3 Face-Tests, 3) quantify the performance of a sample of 204 observers with hyper normal measures of cognition, “thymia,” (ibid. defined elsewhere) and low levels of anxiety 4) analysis of the 6 primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual-Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Deci-sion-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Finger-print-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.展开更多
BACKGROUND Primiparas are usually at high risk of experiencing perinatal depression,which may cause prolonged labor,increased blood loss,and intensified pain,affecting maternal and fetal outcomes.Therefore,interventio...BACKGROUND Primiparas are usually at high risk of experiencing perinatal depression,which may cause prolonged labor,increased blood loss,and intensified pain,affecting maternal and fetal outcomes.Therefore,interventions are necessary to improve maternal and fetal outcomes and alleviate primiparas’negative emotions(NEs).AIM To discusses the impact of nursing responsibility in midwifery and postural and psychological interventions on maternal and fetal outcomes as well as primiparas’NEs.METHODS As participants,115 primiparas admitted to Quanzhou Maternity and Child Healthcare Hospital between May 2020 and May 2022 were selected.Among them,56 primiparas(control group,Con)were subjected to conventional midwifery and routine nursing.The remaining 59(research group,Res)were subjected to the nursing model of midwifery and postural and psychological interventions.Both groups were comparatively analyzed from the perspectives of delivery mode(cesarean,natural,or forceps-assisted),maternal and fetal outcomes(uterine inertia,postpartum hemorrhage,placental abruption,neonatal pulmonary injury,and neonatal asphyxia),NEs(Hamilton Anxiety/Depressionrating Scale,HAMA/HAMD),labor duration,and nursing satisfaction.RESULTS The Res exhibited a markedly higher natural delivery rate and nursing satisfaction than the Con.Additionally,the Res indicated a lower incidence of adverse events(e.g.,uterine inertia,postpartum hemorrhage,placental abruption,neonatal lung injury,and neonatal asphyxia)and shortened duration of various stages of labor.It also showed statistically lower post-interventional HAMA and HAMD scores than the Con and pre-interventional values.CONCLUSION The nursing model of midwifery and postural and psychological interventions increase the natural delivery rate and reduce the duration of each labor stage.These are also conducive to improving maternal and fetal outcomes and mitigating primiparas’NEs and thus deserve popularity in clinical practice.展开更多
Sentiment analysis is a method to identify and understand the emotion in the text through NLP and text analysis. In the era of information technology, there is often a certain error between the comments on the movie w...Sentiment analysis is a method to identify and understand the emotion in the text through NLP and text analysis. In the era of information technology, there is often a certain error between the comments on the movie website and the actual score of the movie, and sentiment analysis technology provides a new way to solve this problem. In this paper, Python is used to obtain the movie review data from the Douban platform, and the model is constructed and trained by using naive Bayes and Bi-LSTM. According to the index, a better Bi-LSTM model is selected to classify the emotion of users’ movie reviews, and the classification results are scored according to the classification results, and compared with the real ratings on the website. According to the error of the final comparison results, the feasibility of this technology in the scoring direction of film reviews is being verified. By applying this technology, the phenomenon of film rating distortion in the information age can be prevented and the rights and interests of film and television works can be safeguarded.展开更多
Panic is a common emotion when pedestrians are in danger during the actual evacuation, which can affect pedestrians a lot and may lead to fatalities as people are crushed or trampled. However, the systematic studies a...Panic is a common emotion when pedestrians are in danger during the actual evacuation, which can affect pedestrians a lot and may lead to fatalities as people are crushed or trampled. However, the systematic studies and quantitative analysis of evacuation panic, such as panic behaviors, panic evolution, and the stress responses of pedestrians with different personality traits to panic emotion are still rare. Here, combined with the theories of OCEAN(openness, conscientiousness,extroversion, agreeableness, neuroticism) model and SIS(susceptible, infected, susceptible) model, an extended cellular automata model is established by the floor field method in order to investigate the dynamics of panic emotion in the crowd and dynamics of pedestrians affected by emotion. In the model, pedestrians are divided into stable pedestrians and sensitive pedestrians according to their different personality traits in response to emotion, and their emotional state can be normal or panic. Besides, emotion contagion, emotion decay, and the influence of emotion on pedestrian movement decision-making are also considered. The simulation results show that evacuation efficiency will be reduced, for panic pedestrians may act maladaptive behaviors, thereby making the crowd more chaotic. The results further suggest that improving pedestrian psychological ability and raising the standard of management can effectively increase evacuation efficiency. And it is necessary to reduce the panic level of group as soon as possible at the beginning of evacuation. We hope this research could provide a new method to analyze crowd evacuation in panic situations.展开更多
Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship am...Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship among experts and the internal reliability of experts are important factors in decision-making.This paper focuses on improving the scientificity and effectiveness of decision-making and presents a consensus model combining trust relationship among experts and expert reliability in social network group decision-making(SN-GDM).A concept named matching degree is proposed to measure expert reliability.Meanwhile,linguistic information is applied to manage the imprecise and vague information.Matching degree is expressed by a 2-tuple linguistic model,and experts’preferences are measured by a probabilistic linguistic term set(PLTS).Subsequently,a hybrid weight is explored to weigh experts’importance in a group.Then a consensus measure is introduced and a feedback mechanism is developed to produce some personalized recommendations with higher group consensus.Finally,a comparative example is provided to prove the scientificity and effectiveness of the proposed consensus model.展开更多
In the face offierce competition in the social environment,mental health problems gradually get the attention of the public,in order to achieve accurate mental health data analysis,the construction of music education ...In the face offierce competition in the social environment,mental health problems gradually get the attention of the public,in order to achieve accurate mental health data analysis,the construction of music education is based on emotional tendency analysis of psychological adjustment function model.Design emotional tendency analysis of music education psychological adjustment function architecture,music teaching goal as psychological adjust-ment function architecture building orientation,music teaching content as a foundation for psychological adjust-ment function architecture and music teaching process as a psychological adjustment function architecture building,music teaching evaluation as the key of building key regulating function architecture,Establish a core literacy oriented evaluation system.Different evaluation methods were used to obtain the evaluation results.Four levels of psychological adjustment function model of music education are designed,and the psychological adjust-ment function of music education is put forward,thus completing the construction of psychological adjustment function model of music education.The experimental results show that the absolute value of the data acquisition error of the designed model is minimum,which is not more than 0.2.It is less affected by a bad coefficient and has good performance.It can quickly converge to the best state in the actual prediction process and has a strong con-vergence ability.展开更多
In order to carry out comprehensive decision-making of multi-class shared parking measures within a region, a bilevel model assisting decision-making is proposed. The upper level selects parkers' average satisfaction...In order to carry out comprehensive decision-making of multi-class shared parking measures within a region, a bilevel model assisting decision-making is proposed. The upper level selects parkers' average satisfaction and the violation rate during peak hours as indices in object function, and sets probability distribution models describing dynamic parking demand of each site, the feasibility of shared parking scenarios and occupancy requirements during peak hours of each parking lot as restrictions. The simulation model in the lower level sets up rules to assign each parker in the random parking demand series to the proper parking lot. An iterative method is proposed to confirm the state of each parking lot at the start of formal simulations. Besides, two patterns linking initialization and formal simulation are presented to acquire multiple solutions. The results of the numerical examples indicate the effectiveness of the model and solution methods.展开更多
A cascaded projection of the Gaussian mixture model algorithm is proposed.First,the marginal distribution of the Gaussian mixture model is computed for different feature dimensions, and a number of sub-classifiers are...A cascaded projection of the Gaussian mixture model algorithm is proposed.First,the marginal distribution of the Gaussian mixture model is computed for different feature dimensions, and a number of sub-classifiers are generated using the marginal distribution model.Each sub-classifier is based on different feature sets.The cascaded structure is adopted to fuse the sub-classifiers dynamically to achieve sample adaptation ability.Secondly,the effectiveness of the proposed algorithm is verified on electrocardiogram emotional signal and speech emotional signal.Emotional data including fidgetiness,happiness and sadness is collected by induction experiments.Finally,the emotion feature extraction method is discussed,including heart rate variability, the chaotic electrocardiogram feature and utterance level static feature.The emotional feature reduction methods are studied, including principle component analysis,sequential forward selection, the Fisher discriminant ratio and maximal information coefficient.The experimental results show that the proposed classification algorithm can effectively improve recognition accuracy in two different scenarios.展开更多
Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluatio...Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluation is introduced to make decision in slicing schemes for a processing part. The application in determining the slicing scheme for a computer mouse during prototyping shows that the method increases the rationality during decision- making and improves quality and efficiency for the prototyping part.展开更多
Speech emotion recognition,as an important component of humancomputer interaction technology,has received increasing attention.Recent studies have treated emotion recognition of speech signals as a multimodal task,due...Speech emotion recognition,as an important component of humancomputer interaction technology,has received increasing attention.Recent studies have treated emotion recognition of speech signals as a multimodal task,due to its inclusion of the semantic features of two different modalities,i.e.,audio and text.However,existing methods often fail in effectively represent features and capture correlations.This paper presents a multi-level circulant cross-modal Transformer(MLCCT)formultimodal speech emotion recognition.The proposed model can be divided into three steps,feature extraction,interaction and fusion.Self-supervised embedding models are introduced for feature extraction,which give a more powerful representation of the original data than those using spectrograms or audio features such as Mel-frequency cepstral coefficients(MFCCs)and low-level descriptors(LLDs).In particular,MLCCT contains two types of feature interaction processes,where a bidirectional Long Short-term Memory(Bi-LSTM)with circulant interaction mechanism is proposed for low-level features,while a two-stream residual cross-modal Transformer block is appliedwhen high-level features are involved.Finally,we choose self-attention blocks for fusion and a fully connected layer to make predictions.To evaluate the performance of our proposed model,comprehensive experiments are conducted on three widely used benchmark datasets including IEMOCAP,MELD and CMU-MOSEI.The competitive results verify the effectiveness of our approach.展开更多
Pursuing the green manufacturing (GM) of products i s very beneficial in the alleviation of environment burdens. In order to reap such benefits, green manufacturing is involved in every aspect of manufacturing proc es...Pursuing the green manufacturing (GM) of products i s very beneficial in the alleviation of environment burdens. In order to reap such benefits, green manufacturing is involved in every aspect of manufacturing proc esses. During the machining process, cutting fluid is one of the main roots of e nvironmental pollution. And how to make an optimal selection for cutting fluid f or GM is an important path to reduce the environmental pollution. The objective factors of decision-making problems in the traditional selection of cutting flu id are usually two: quality and cost. But from the viewpoint of GM, environmenta l impact (E) should be considered together. In this paper, a multi-object d ecision-making model of cutting fluid selection for GM is put forward, in which the objects of Quality (Q), Cost(C) and Environmental impact (E) are considered together. In this model, E means to minimize the environmental impact, Q means to maximize the quality and C means to minimize the cost. Each objective is anal yzed in detail too. A case study on a decision-making problem of cutting fluid selection in a gear hobbing process is analyzed, and the result shows the model is practical.展开更多
With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental qua...With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental quality and economic benefits is an important problem for the decision makers. The purpose of this paper is to develop a decision-making model to rank a finite number of alternatives with several and sometimes conflicting criteria. A model for ranking the projects of municipal sewage treatment plants is proposed by using exports' information and the data of the real projects. And, the ranking result is given based on the PROMETHEE method. Furthermore, by means of the concept of the weight stability intervals (WSI), the sensitivity of the ranking results to the size of criteria values and the change of weights value of criteria are discussed. The result shows that some criteria, such as “proportion of benefit to project cost”, will influence the ranking result of alternatives very strong while others not. The influence are not only from the value of criterion but also from the changing the weight of criterion. So, some criteria such as “proportion of benefit to project cost” are key critera for ranking the projects. Decision makers must be cautious to them.展开更多
According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotiona...According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotional space and the multiple emotional spaces. The emotion-switching diagram was defined and transition fimction was developed using Markov chain and linear interpolation algorithm. The simulation model was built using Stateflow toolbox and Simulink toolbox based on the Matlab platform. And the model included three subsystems: the input one, the emotion one and the behavior one. In the emotional subsystem, the responses of different personalities to the external stimuli were described by defining personal space. This model takes states from an emotional space and updates its state depending on its current state and a state of its input (also a state-emotion). The simulation model realizes the process of switching the emotion from the neutral state to other basic emotions. The simulation result is proved to correspond to emotion-switching law of human beings.展开更多
Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making i...Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making in real life driving, delphi approach and mathematical statistics method are introduced to construct pair-wise comparison judgment matrix of collision avoidance decision choices to each collision situation. Analytic hierarchy process (AHP) is adopted to establish the agents' collision avoidance decision-making model. To simulate drivers' characteristics, driver factors are added to categorize driving modes into impatient mode, normal mode, and the cautious mode. The results show that this model can simulate human's thinking process, and the agents in the virtual environment can deal with collision situations and make decisions to avoid collisions without intervention. The model can also reflect diversity and uncertainly of real life driving behaviors, and solves the multi-objective, multi-choice ranking priority problem in multi-vehicle collision scenarios. This collision avoidance model of multi-agents model is feasible and effective, and can provide richer and closer-to-life virtual scene for driving simulator, reflecting real-life traffic environment more truly, this model can also promote the practicality of driving simulator.展开更多
文摘BACKGROUND Acute pancreatitis(AP),as a common acute abdomen disease,has a high incidence rate worldwide and is often accompanied by severe complications.Negative emotions lead to increased secretion of stress hormones,elevated blood sugar levels,and enhanced insulin resistance,which in turn increases the risk of AP and significantly affects the patient's quality of life.Therefore,exploring the intervention effects of narrative nursing programs on the negative emotions of patients with AP is not only helpful in alleviating psychological stress and improving quality of life but also has significant implications for improving disease outcomes and prognosis.AIM To construct a narrative nursing model for negative emotions in patients with AP and verify its efficacy in application.METHODS Through Delphi expert consultation,a narrative nursing model for negative emotions in patients with AP was constructed.A non-randomized quasi-experimental study design was used in this study.A total of 92 patients with AP with negative emotions admitted to a tertiary hospital in Nantong City of Jiangsu Province,China from September 2022 to August 2023 were recruited by convenience sampling,among whom 46 patients admitted from September 2022 to February 2023 were included in the observation group,and 46 patients from March to August 2023 were selected as control group.The observation group received narrative nursing plan,while the control group was given with routine nursing.Self-rating anxiety scale(SAS),self-rating depression scale(SDS),positive and negative affect scale(PANAS),caring behavior scale,patient satisfaction scale and 36-item short form health survey questionnaire(SF-36)were used to evaluate their emotions,satisfaction and caring behaviors in the two groups on the day of discharge,1-and 3-month following discharge.RESULTS According to the inclusion and exclusion criteria,a total of 45 cases in the intervention group and 44 cases in the control group eventually recruited and completed in the study.On the day of discharge,the intervention group showed significantly lower scores of SAS,SDS and negative emotion(28.57±4.52 vs 17.4±4.44,P<0.001),whereas evidently higher outcomes in the positive emotion score,Caring behavior scale score and satisfaction score compared to the control group(P<0.05).Repeated measurement analysis of variance showed that significant between-group differences were found in time effect,inter-group effect and interaction effect of SAS and PANAS scores as well as in time effect and inter-group effect of SF-36 scores(P<0.05);the SF-36 scores of two groups at 3 months after discharge were higher than those at 1 month after discharge(P<0.05).CONCLUSION The application of narrative nursing protocols has demonstrated significant effectiveness in alleviating anxiety,ameliorating negative emotions,and enhancing satisfaction among patients with AP.
文摘Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.
基金supported by grants from the National Social Science Foundation of China(19BGL230)the Key Project of Social Science Planning in Jiangxi Province(23JY01).
文摘The relapse of methamphetamine (meth) is associated with decision-making dysfunction. The present study aims to investigate theimpact of different emotions on the decision-making behavior of meth users. We used 2 (gender: male, female) × 3 (emotion:positive, negative, neutral) × 5 (block: 1, 2, 3, 4, 5) mixed experiment design. The study involved 168 meth users who weredivided into three groups: positive emotion, negative emotion and neutral emotion group, and tested by the emotional IowaGambling Task (IGT). The IGT performance of male users exhibited a decreasing trend from Block 1 to Block 3. Female methusers in positive emotion had the best performance in IGT than females in the other two groups. In positive emotion, the IGTperformance of female meth users was significantly better than that of men. Female meth users in positive emotion had betterdecision-making than those in negative or neutral emotion. Female meth users in positive emotion had better decision-makingperformance than males in positive emotion. In negative and neutral emotions, there was no significant gender difference indecision-making.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
文摘The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances.This paper investigates the issue of strategy interaction and behavioral decision-making among game players in simulated confrontation scenarios within a random interference environment.It considers the possible risks that random disturbances may pose to the autonomous decision-making of game players,as well as the impact of participants’manipulative behaviors on the state changes of the players.A nonlinear mathematical model is established to describe the strategy decision-making process of the participants in this scenario.Subsequently,the strategy selection interaction relationship,strategy evolution stability,and dynamic decision-making process of the game players are investigated and verified by simulation experiments.The results show that maneuver-related parameters and random environmental interference factors have different effects on the selection and evolutionary speed of the agent’s strategies.Especially in a highly uncertain environment,even small information asymmetry or miscalculation may have a significant impact on decision-making.This also confirms the feasibility and effectiveness of the method proposed in the paper,which can better explain the behavioral decision-making process of the agent in the interaction process.This study provides feasibility analysis ideas and theoretical references for improving multi-agent interactive decision-making and the interpretability of the game system model.
文摘Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: M.A.R.I.E. enables the rational, quantified measurement of Emotional Visual Acuity (EVA) in an individual observer and a population aged 20 to 70 years. Meanwhile, it can measure the range and intensity of expressed emotions through three Face- Tests, quantify the performance of a sample of 204 observers with hypernormal measures of cognition, “thymia” (defined elsewhere), and low levels of anxiety, and perform analysis of the six primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual- Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Decision-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”, 6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Fingerprint-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.
文摘Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: With M.A.R.I.E. enable a rational quantified measurement of Emotional-Visual-Acuity (EVA) of 1) a) an individual observer, b) in a population aged 20 to 70 years old, 2) measure the range and intensity of expressed emotions by 3 Face-Tests, 3) quantify the performance of a sample of 204 observers with hyper normal measures of cognition, “thymia,” (ibid. defined elsewhere) and low levels of anxiety 4) analysis of the 6 primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual-Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Deci-sion-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Finger-print-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition.
文摘BACKGROUND Primiparas are usually at high risk of experiencing perinatal depression,which may cause prolonged labor,increased blood loss,and intensified pain,affecting maternal and fetal outcomes.Therefore,interventions are necessary to improve maternal and fetal outcomes and alleviate primiparas’negative emotions(NEs).AIM To discusses the impact of nursing responsibility in midwifery and postural and psychological interventions on maternal and fetal outcomes as well as primiparas’NEs.METHODS As participants,115 primiparas admitted to Quanzhou Maternity and Child Healthcare Hospital between May 2020 and May 2022 were selected.Among them,56 primiparas(control group,Con)were subjected to conventional midwifery and routine nursing.The remaining 59(research group,Res)were subjected to the nursing model of midwifery and postural and psychological interventions.Both groups were comparatively analyzed from the perspectives of delivery mode(cesarean,natural,or forceps-assisted),maternal and fetal outcomes(uterine inertia,postpartum hemorrhage,placental abruption,neonatal pulmonary injury,and neonatal asphyxia),NEs(Hamilton Anxiety/Depressionrating Scale,HAMA/HAMD),labor duration,and nursing satisfaction.RESULTS The Res exhibited a markedly higher natural delivery rate and nursing satisfaction than the Con.Additionally,the Res indicated a lower incidence of adverse events(e.g.,uterine inertia,postpartum hemorrhage,placental abruption,neonatal lung injury,and neonatal asphyxia)and shortened duration of various stages of labor.It also showed statistically lower post-interventional HAMA and HAMD scores than the Con and pre-interventional values.CONCLUSION The nursing model of midwifery and postural and psychological interventions increase the natural delivery rate and reduce the duration of each labor stage.These are also conducive to improving maternal and fetal outcomes and mitigating primiparas’NEs and thus deserve popularity in clinical practice.
文摘Sentiment analysis is a method to identify and understand the emotion in the text through NLP and text analysis. In the era of information technology, there is often a certain error between the comments on the movie website and the actual score of the movie, and sentiment analysis technology provides a new way to solve this problem. In this paper, Python is used to obtain the movie review data from the Douban platform, and the model is constructed and trained by using naive Bayes and Bi-LSTM. According to the index, a better Bi-LSTM model is selected to classify the emotion of users’ movie reviews, and the classification results are scored according to the classification results, and compared with the real ratings on the website. According to the error of the final comparison results, the feasibility of this technology in the scoring direction of film reviews is being verified. By applying this technology, the phenomenon of film rating distortion in the information age can be prevented and the rights and interests of film and television works can be safeguarded.
基金the National Natural Science Foundation of China (Grant Nos. 71790613 and 72091512)the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2020SK2004)。
文摘Panic is a common emotion when pedestrians are in danger during the actual evacuation, which can affect pedestrians a lot and may lead to fatalities as people are crushed or trampled. However, the systematic studies and quantitative analysis of evacuation panic, such as panic behaviors, panic evolution, and the stress responses of pedestrians with different personality traits to panic emotion are still rare. Here, combined with the theories of OCEAN(openness, conscientiousness,extroversion, agreeableness, neuroticism) model and SIS(susceptible, infected, susceptible) model, an extended cellular automata model is established by the floor field method in order to investigate the dynamics of panic emotion in the crowd and dynamics of pedestrians affected by emotion. In the model, pedestrians are divided into stable pedestrians and sensitive pedestrians according to their different personality traits in response to emotion, and their emotional state can be normal or panic. Besides, emotion contagion, emotion decay, and the influence of emotion on pedestrian movement decision-making are also considered. The simulation results show that evacuation efficiency will be reduced, for panic pedestrians may act maladaptive behaviors, thereby making the crowd more chaotic. The results further suggest that improving pedestrian psychological ability and raising the standard of management can effectively increase evacuation efficiency. And it is necessary to reduce the panic level of group as soon as possible at the beginning of evacuation. We hope this research could provide a new method to analyze crowd evacuation in panic situations.
基金the National Natural Science Foundation of China(71871121).
文摘Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship among experts and the internal reliability of experts are important factors in decision-making.This paper focuses on improving the scientificity and effectiveness of decision-making and presents a consensus model combining trust relationship among experts and expert reliability in social network group decision-making(SN-GDM).A concept named matching degree is proposed to measure expert reliability.Meanwhile,linguistic information is applied to manage the imprecise and vague information.Matching degree is expressed by a 2-tuple linguistic model,and experts’preferences are measured by a probabilistic linguistic term set(PLTS).Subsequently,a hybrid weight is explored to weigh experts’importance in a group.Then a consensus measure is introduced and a feedback mechanism is developed to produce some personalized recommendations with higher group consensus.Finally,a comparative example is provided to prove the scientificity and effectiveness of the proposed consensus model.
基金supported by Shandong Provincial Social Science Planning Research Project“Research on Inheritance and Innovation of Shandong Wooden Clappers Culture”(20CCXJ26).
文摘In the face offierce competition in the social environment,mental health problems gradually get the attention of the public,in order to achieve accurate mental health data analysis,the construction of music education is based on emotional tendency analysis of psychological adjustment function model.Design emotional tendency analysis of music education psychological adjustment function architecture,music teaching goal as psychological adjust-ment function architecture building orientation,music teaching content as a foundation for psychological adjust-ment function architecture and music teaching process as a psychological adjustment function architecture building,music teaching evaluation as the key of building key regulating function architecture,Establish a core literacy oriented evaluation system.Different evaluation methods were used to obtain the evaluation results.Four levels of psychological adjustment function model of music education are designed,and the psychological adjust-ment function of music education is put forward,thus completing the construction of psychological adjustment function model of music education.The experimental results show that the absolute value of the data acquisition error of the designed model is minimum,which is not more than 0.2.It is less affected by a bad coefficient and has good performance.It can quickly converge to the best state in the actual prediction process and has a strong con-vergence ability.
基金The Planning Program of Science and Technology of Ministry of Housing and Urban-Rural Development of China (No. 2010-K5-16)
文摘In order to carry out comprehensive decision-making of multi-class shared parking measures within a region, a bilevel model assisting decision-making is proposed. The upper level selects parkers' average satisfaction and the violation rate during peak hours as indices in object function, and sets probability distribution models describing dynamic parking demand of each site, the feasibility of shared parking scenarios and occupancy requirements during peak hours of each parking lot as restrictions. The simulation model in the lower level sets up rules to assign each parker in the random parking demand series to the proper parking lot. An iterative method is proposed to confirm the state of each parking lot at the start of formal simulations. Besides, two patterns linking initialization and formal simulation are presented to acquire multiple solutions. The results of the numerical examples indicate the effectiveness of the model and solution methods.
基金The National Natural Science Foundation of China(No.61231002,61273266,51075068,61271359)Doctoral Fund of Ministry of Education of China(No.20110092130004)
文摘A cascaded projection of the Gaussian mixture model algorithm is proposed.First,the marginal distribution of the Gaussian mixture model is computed for different feature dimensions, and a number of sub-classifiers are generated using the marginal distribution model.Each sub-classifier is based on different feature sets.The cascaded structure is adopted to fuse the sub-classifiers dynamically to achieve sample adaptation ability.Secondly,the effectiveness of the proposed algorithm is verified on electrocardiogram emotional signal and speech emotional signal.Emotional data including fidgetiness,happiness and sadness is collected by induction experiments.Finally,the emotion feature extraction method is discussed,including heart rate variability, the chaotic electrocardiogram feature and utterance level static feature.The emotional feature reduction methods are studied, including principle component analysis,sequential forward selection, the Fisher discriminant ratio and maximal information coefficient.The experimental results show that the proposed classification algorithm can effectively improve recognition accuracy in two different scenarios.
基金Supported by the Science and Technology Support Key Project of Jiangsu Province (DE2008365)~~
文摘Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluation is introduced to make decision in slicing schemes for a processing part. The application in determining the slicing scheme for a computer mouse during prototyping shows that the method increases the rationality during decision- making and improves quality and efficiency for the prototyping part.
基金the National Natural Science Foundation of China(No.61872231)the National Key Research and Development Program of China(No.2021YFC2801000)the Major Research plan of the National Social Science Foundation of China(No.2000&ZD130).
文摘Speech emotion recognition,as an important component of humancomputer interaction technology,has received increasing attention.Recent studies have treated emotion recognition of speech signals as a multimodal task,due to its inclusion of the semantic features of two different modalities,i.e.,audio and text.However,existing methods often fail in effectively represent features and capture correlations.This paper presents a multi-level circulant cross-modal Transformer(MLCCT)formultimodal speech emotion recognition.The proposed model can be divided into three steps,feature extraction,interaction and fusion.Self-supervised embedding models are introduced for feature extraction,which give a more powerful representation of the original data than those using spectrograms or audio features such as Mel-frequency cepstral coefficients(MFCCs)and low-level descriptors(LLDs).In particular,MLCCT contains two types of feature interaction processes,where a bidirectional Long Short-term Memory(Bi-LSTM)with circulant interaction mechanism is proposed for low-level features,while a two-stream residual cross-modal Transformer block is appliedwhen high-level features are involved.Finally,we choose self-attention blocks for fusion and a fully connected layer to make predictions.To evaluate the performance of our proposed model,comprehensive experiments are conducted on three widely used benchmark datasets including IEMOCAP,MELD and CMU-MOSEI.The competitive results verify the effectiveness of our approach.
文摘Pursuing the green manufacturing (GM) of products i s very beneficial in the alleviation of environment burdens. In order to reap such benefits, green manufacturing is involved in every aspect of manufacturing proc esses. During the machining process, cutting fluid is one of the main roots of e nvironmental pollution. And how to make an optimal selection for cutting fluid f or GM is an important path to reduce the environmental pollution. The objective factors of decision-making problems in the traditional selection of cutting flu id are usually two: quality and cost. But from the viewpoint of GM, environmenta l impact (E) should be considered together. In this paper, a multi-object d ecision-making model of cutting fluid selection for GM is put forward, in which the objects of Quality (Q), Cost(C) and Environmental impact (E) are considered together. In this model, E means to minimize the environmental impact, Q means to maximize the quality and C means to minimize the cost. Each objective is anal yzed in detail too. A case study on a decision-making problem of cutting fluid selection in a gear hobbing process is analyzed, and the result shows the model is practical.
基金Shanghai Leading Academic Discipline Project (T0502)Shanghai Municipal Educational Commission Project (05EZ32).
文摘With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental quality and economic benefits is an important problem for the decision makers. The purpose of this paper is to develop a decision-making model to rank a finite number of alternatives with several and sometimes conflicting criteria. A model for ranking the projects of municipal sewage treatment plants is proposed by using exports' information and the data of the real projects. And, the ranking result is given based on the PROMETHEE method. Furthermore, by means of the concept of the weight stability intervals (WSI), the sensitivity of the ranking results to the size of criteria values and the change of weights value of criteria are discussed. The result shows that some criteria, such as “proportion of benefit to project cost”, will influence the ranking result of alternatives very strong while others not. The influence are not only from the value of criterion but also from the changing the weight of criterion. So, some criteria such as “proportion of benefit to project cost” are key critera for ranking the projects. Decision makers must be cautious to them.
基金Project(2006AA04Z201) supported by the National High-Tech Research and Development Program of China
文摘According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotional space and the multiple emotional spaces. The emotion-switching diagram was defined and transition fimction was developed using Markov chain and linear interpolation algorithm. The simulation model was built using Stateflow toolbox and Simulink toolbox based on the Matlab platform. And the model included three subsystems: the input one, the emotion one and the behavior one. In the emotional subsystem, the responses of different personalities to the external stimuli were described by defining personal space. This model takes states from an emotional space and updates its state depending on its current state and a state of its input (also a state-emotion). The simulation model realizes the process of switching the emotion from the neutral state to other basic emotions. The simulation result is proved to correspond to emotion-switching law of human beings.
基金supported by National Basic Research Program (973 Program,No.2004CB719402)National Natural Science Foundation of China (No.60736019)Natural Science Foundation of Zhejiang Province, China(No.Y105430).
文摘Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making in real life driving, delphi approach and mathematical statistics method are introduced to construct pair-wise comparison judgment matrix of collision avoidance decision choices to each collision situation. Analytic hierarchy process (AHP) is adopted to establish the agents' collision avoidance decision-making model. To simulate drivers' characteristics, driver factors are added to categorize driving modes into impatient mode, normal mode, and the cautious mode. The results show that this model can simulate human's thinking process, and the agents in the virtual environment can deal with collision situations and make decisions to avoid collisions without intervention. The model can also reflect diversity and uncertainly of real life driving behaviors, and solves the multi-objective, multi-choice ranking priority problem in multi-vehicle collision scenarios. This collision avoidance model of multi-agents model is feasible and effective, and can provide richer and closer-to-life virtual scene for driving simulator, reflecting real-life traffic environment more truly, this model can also promote the practicality of driving simulator.