With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature t...With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature to identify fake news,but these methods have limitations when dealing with news in specific domains.In order to solve the problem of weak feature correlation between data from different domains,a model for detecting fake news by integrating domain-specific emotional and semantic features is proposed.This method makes full use of the attention mechanism,grasps the correlation between different features,and effectively improves the effect of feature fusion.The algorithm first extracts the semantic features of news text through the Bi-LSTM(Bidirectional Long Short-Term Memory)layer to capture the contextual relevance of news text.Senta-BiLSTM is then used to extract emotional features and predict the probability of positive and negative emotions in the text.It then uses domain features as an enhancement feature and attention mechanism to fully capture more fine-grained emotional features associated with that domain.Finally,the fusion features are taken as the input of the fake news detection classifier,combined with the multi-task representation of information,and the MLP and Softmax functions are used for classification.The experimental results show that on the Chinese dataset Weibo21,the F1 value of this model is 0.958,4.9% higher than that of the sub-optimal model;on the English dataset FakeNewsNet,the F1 value of the detection result of this model is 0.845,1.8% higher than that of the sub-optimal model,which is advanced and feasible.展开更多
Music in advertising plays a crucial role in making the audience feel beyond the multi-level visual experience.The intrinsic link between brand publicity and advertising music has long been a puzzle.This paper discuss...Music in advertising plays a crucial role in making the audience feel beyond the multi-level visual experience.The intrinsic link between brand publicity and advertising music has long been a puzzle.This paper discusses the impact of the consistency between the emotional characteristics of music and brand personality on brand experience and expands the discussion to brand experience under market competition.We use the examples of Canon and Apple for our study.The results shows that:(1)the higher the degree of consistency between the emotional experience from music and brand personality,the greater the positive effect on brand experience;(2)this positive effect is not as significant for functional brands as it is for representative brands;(3)the consistency between the emotional experience from music and brand personality has a greater impact on brand experience for representative brands than functional brands.The results provide practical guidance for branding campaigns.展开更多
Analysis of customers' satisfaction provides a guarantee to improve the service quality in call centers.In this paper,a novel satisfaction recognition framework is introduced to analyze the customers' satisfaction.I...Analysis of customers' satisfaction provides a guarantee to improve the service quality in call centers.In this paper,a novel satisfaction recognition framework is introduced to analyze the customers' satisfaction.In natural conversations,the interaction between a customer and its agent take place more than once.One of the difficulties insatisfaction analysis at call centers is that not all conversation turns exhibit customer satisfaction or dissatisfaction. To solve this problem,an intelligent system is proposed that utilizes acoustic features to recognize customers' emotion and utilizes the global features of emotion and duration to analyze the satisfaction. Experiments on real-call data show that the proposed system offers a significantly higher accuracy in analyzing the satisfaction than the baseline system. The average F value is improved to 0. 701 from 0. 664.展开更多
Semi-supervised discriminant analysis SDA which uses a combination of multiple embedding graphs and kernel SDA KSDA are adopted in supervised speech emotion recognition.When the emotional factors of speech signal samp...Semi-supervised discriminant analysis SDA which uses a combination of multiple embedding graphs and kernel SDA KSDA are adopted in supervised speech emotion recognition.When the emotional factors of speech signal samples are preprocessed different categories of features including pitch zero-cross rate energy durance formant and Mel frequency cepstrum coefficient MFCC as well as their statistical parameters are extracted from the utterances of samples.In the dimensionality reduction stage before the feature vectors are sent into classifiers parameter-optimized SDA and KSDA are performed to reduce dimensionality.Experiments on the Berlin speech emotion database show that SDA for supervised speech emotion recognition outperforms some other state-of-the-art dimensionality reduction methods based on spectral graph learning such as linear discriminant analysis LDA locality preserving projections LPP marginal Fisher analysis MFA etc. when multi-class support vector machine SVM classifiers are used.Additionally KSDA can achieve better recognition performance based on kernelized data mapping compared with the above methods including SDA.展开更多
The research of emotion recognition based on electroencephalogram(EEG)signals often ignores the related information between the brain electrode channels and the contextual emotional information existing in EEG signals...The research of emotion recognition based on electroencephalogram(EEG)signals often ignores the related information between the brain electrode channels and the contextual emotional information existing in EEG signals,which may contain important characteristics related to emotional states.Aiming at the above defects,a spatiotemporal emotion recognition method based on a 3-dimensional(3 D)time-frequency domain feature matrix was proposed.Specifically,the extracted time-frequency domain EEG features are first expressed as a 3 D matrix format according to the actual position of the cerebral cortex.Then,the input 3 D matrix is processed successively by multivariate convolutional neural network(MVCNN)and long short-term memory(LSTM)to classify the emotional state.Spatiotemporal emotion recognition method is evaluated on the DEAP data set,and achieved accuracy of 87.58%and 88.50%on arousal and valence dimensions respectively in binary classification tasks,as well as obtained accuracy of 84.58%in four class classification tasks.The experimental results show that 3 D matrix representation can represent emotional information more reasonably than two-dimensional(2 D).In addition,MVCNN and LSTM can utilize the spatial information of the electrode channels and the temporal context information of the EEG signal respectively.展开更多
基金The authors are highly thankful to the National Social Science Foundation of China(20BXW101,18XXW015)Innovation Research Project for the Cultivation of High-Level Scientific and Technological Talents(Top-Notch Talents of theDiscipline)(ZZKY2022303)+3 种基金National Natural Science Foundation of China(Nos.62102451,62202496)Basic Frontier Innovation Project of Engineering University of People’s Armed Police(WJX202316)This work is also supported by National Natural Science Foundation of China(No.62172436)Engineering University of PAP’s Funding for Scientific Research Innovation Team,Engineering University of PAP’s Funding for Basic Scientific Research,and Engineering University of PAP’s Funding for Education and Teaching.Natural Science Foundation of Shaanxi Province(No.2023-JCYB-584).
文摘With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature to identify fake news,but these methods have limitations when dealing with news in specific domains.In order to solve the problem of weak feature correlation between data from different domains,a model for detecting fake news by integrating domain-specific emotional and semantic features is proposed.This method makes full use of the attention mechanism,grasps the correlation between different features,and effectively improves the effect of feature fusion.The algorithm first extracts the semantic features of news text through the Bi-LSTM(Bidirectional Long Short-Term Memory)layer to capture the contextual relevance of news text.Senta-BiLSTM is then used to extract emotional features and predict the probability of positive and negative emotions in the text.It then uses domain features as an enhancement feature and attention mechanism to fully capture more fine-grained emotional features associated with that domain.Finally,the fusion features are taken as the input of the fake news detection classifier,combined with the multi-task representation of information,and the MLP and Softmax functions are used for classification.The experimental results show that on the Chinese dataset Weibo21,the F1 value of this model is 0.958,4.9% higher than that of the sub-optimal model;on the English dataset FakeNewsNet,the F1 value of the detection result of this model is 0.845,1.8% higher than that of the sub-optimal model,which is advanced and feasible.
基金We acknowledge the financial support from the National Natural Science Foundation of China under[grant number 71172128].
文摘Music in advertising plays a crucial role in making the audience feel beyond the multi-level visual experience.The intrinsic link between brand publicity and advertising music has long been a puzzle.This paper discusses the impact of the consistency between the emotional characteristics of music and brand personality on brand experience and expands the discussion to brand experience under market competition.We use the examples of Canon and Apple for our study.The results shows that:(1)the higher the degree of consistency between the emotional experience from music and brand personality,the greater the positive effect on brand experience;(2)this positive effect is not as significant for functional brands as it is for representative brands;(3)the consistency between the emotional experience from music and brand personality has a greater impact on brand experience for representative brands than functional brands.The results provide practical guidance for branding campaigns.
基金Supported by the National Natural Science Foundation of China(61473041,61571044,11590772)
文摘Analysis of customers' satisfaction provides a guarantee to improve the service quality in call centers.In this paper,a novel satisfaction recognition framework is introduced to analyze the customers' satisfaction.In natural conversations,the interaction between a customer and its agent take place more than once.One of the difficulties insatisfaction analysis at call centers is that not all conversation turns exhibit customer satisfaction or dissatisfaction. To solve this problem,an intelligent system is proposed that utilizes acoustic features to recognize customers' emotion and utilizes the global features of emotion and duration to analyze the satisfaction. Experiments on real-call data show that the proposed system offers a significantly higher accuracy in analyzing the satisfaction than the baseline system. The average F value is improved to 0. 701 from 0. 664.
基金The National Natural Science Foundation of China(No.61231002,61273266)the Ph.D.Programs Foundation of Ministry of Education of China(No.20110092130004)
文摘Semi-supervised discriminant analysis SDA which uses a combination of multiple embedding graphs and kernel SDA KSDA are adopted in supervised speech emotion recognition.When the emotional factors of speech signal samples are preprocessed different categories of features including pitch zero-cross rate energy durance formant and Mel frequency cepstrum coefficient MFCC as well as their statistical parameters are extracted from the utterances of samples.In the dimensionality reduction stage before the feature vectors are sent into classifiers parameter-optimized SDA and KSDA are performed to reduce dimensionality.Experiments on the Berlin speech emotion database show that SDA for supervised speech emotion recognition outperforms some other state-of-the-art dimensionality reduction methods based on spectral graph learning such as linear discriminant analysis LDA locality preserving projections LPP marginal Fisher analysis MFA etc. when multi-class support vector machine SVM classifiers are used.Additionally KSDA can achieve better recognition performance based on kernelized data mapping compared with the above methods including SDA.
基金supported by the National Natural Science Foundation of China(61872126)the Key Scientific Research Project Plan of Colleges and Universities in Henan Province(19A520004)。
文摘The research of emotion recognition based on electroencephalogram(EEG)signals often ignores the related information between the brain electrode channels and the contextual emotional information existing in EEG signals,which may contain important characteristics related to emotional states.Aiming at the above defects,a spatiotemporal emotion recognition method based on a 3-dimensional(3 D)time-frequency domain feature matrix was proposed.Specifically,the extracted time-frequency domain EEG features are first expressed as a 3 D matrix format according to the actual position of the cerebral cortex.Then,the input 3 D matrix is processed successively by multivariate convolutional neural network(MVCNN)and long short-term memory(LSTM)to classify the emotional state.Spatiotemporal emotion recognition method is evaluated on the DEAP data set,and achieved accuracy of 87.58%and 88.50%on arousal and valence dimensions respectively in binary classification tasks,as well as obtained accuracy of 84.58%in four class classification tasks.The experimental results show that 3 D matrix representation can represent emotional information more reasonably than two-dimensional(2 D).In addition,MVCNN and LSTM can utilize the spatial information of the electrode channels and the temporal context information of the EEG signal respectively.