The formation mechanism of monodisperse polymer latex particles in the emulsifier-free emulsion polymerizationof methyl methacrylate and butyl acrylate with potassium persulfate as initiator was investigated. A multi-...The formation mechanism of monodisperse polymer latex particles in the emulsifier-free emulsion polymerizationof methyl methacrylate and butyl acrylate with potassium persulfate as initiator was investigated. A multi-step formationmechanism for the monodisperse polymer particles was proposed. The nucleation mechanism is considered to be thecoagulation of the precursor particles by homogeneous nucleation when the primary particles reach a critical size with highsurface charge density and sufficient stability. It had been proved by a special experiment that the early latex particles formedby the coagulation were stable. The primary particles grow by absorbing monomers and radicals in the polymerization systemand then become colloidally unstable again due to the understandable decrease of particle surface charge density, which leadsto the aggregation of the growing particles and the formation of larger latex pedicles therefrom. Aner the nucleation period,the preferential aggregation of the smaller particles in the propagation process leads to the change of the particles towards auniform size and narrower particle size distribution. The coexistence and competition of homogeneous nucleation,coagulation, propagation and aggregation result in the increase of the polydispersity index (U = D_(43)/D_(10)) in the first Stage,then its decrease in the later stage because of the competition of propagation and aggregation, and the gradual formation ofthe monodisperse particles.展开更多
Soap-free P(MMA-EA-MAA) particles with narrow size distribution were synthesized by seeded emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and methacrylic acid (MAA), and large voids inside t...Soap-free P(MMA-EA-MAA) particles with narrow size distribution were synthesized by seeded emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and methacrylic acid (MAA), and large voids inside the particles were generated by alkali posttreatment in the presence of 2-butanone. Results indicated that the size of void and the particle volume were related with the amount of 2-butanone. The generation mechanism of voids was proposed.展开更多
The semibatch emulsifier-free emulsion copolymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA) in the presence of 2-hydroxyethyl methacrylate (HEMA) initiated by K2S2O8 (PSP) was studied. The average p...The semibatch emulsifier-free emulsion copolymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA) in the presence of 2-hydroxyethyl methacrylate (HEMA) initiated by K2S2O8 (PSP) was studied. The average particle diameter increases with an increase of total solids content, HEMA content, PSP content, ionic strength of the system and monomer feed rate, and decreases with the monomer feed ratio from 3/1 (MMA/BA mole.) to 1/3. The stability of this reaction system is improved by adding HEMA as nonionic comonomer. The high solids content (50%) latex with monodisperse particle can be obtained using this process.展开更多
Monodisperse functional polymer microspheres with different particle size and with clean surface were prepared by batch soap-free emulsion polymerization of styrene, methyl methacrylate and acrylic acid in the presenc...Monodisperse functional polymer microspheres with different particle size and with clean surface were prepared by batch soap-free emulsion polymerization of styrene, methyl methacrylate and acrylic acid in the presence of salts, and the influences of type and amount of electrolytes on polymerization process and particle morphology were investigated. Results showed that there was a critical concentration for different electrolyte to make polymerization process and the resultant emulsion stable, and the particle size increased with the increase of electrolyte concentration. The effect of metal ions was Ca^2+〉〉K^+〉Na^+〉Li^+, and the effect of haloids was Br〉Cl〉F. Keywords: Electrolyte, soap-free emulsion polymerization, polystyrene, latex particle morphology.展开更多
文摘The formation mechanism of monodisperse polymer latex particles in the emulsifier-free emulsion polymerizationof methyl methacrylate and butyl acrylate with potassium persulfate as initiator was investigated. A multi-step formationmechanism for the monodisperse polymer particles was proposed. The nucleation mechanism is considered to be thecoagulation of the precursor particles by homogeneous nucleation when the primary particles reach a critical size with highsurface charge density and sufficient stability. It had been proved by a special experiment that the early latex particles formedby the coagulation were stable. The primary particles grow by absorbing monomers and radicals in the polymerization systemand then become colloidally unstable again due to the understandable decrease of particle surface charge density, which leadsto the aggregation of the growing particles and the formation of larger latex pedicles therefrom. Aner the nucleation period,the preferential aggregation of the smaller particles in the propagation process leads to the change of the particles towards auniform size and narrower particle size distribution. The coexistence and competition of homogeneous nucleation,coagulation, propagation and aggregation result in the increase of the polydispersity index (U = D_(43)/D_(10)) in the first Stage,then its decrease in the later stage because of the competition of propagation and aggregation, and the gradual formation ofthe monodisperse particles.
基金the National 863 Project of China(grant No.2001AA242041)for financial support
文摘Soap-free P(MMA-EA-MAA) particles with narrow size distribution were synthesized by seeded emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and methacrylic acid (MAA), and large voids inside the particles were generated by alkali posttreatment in the presence of 2-butanone. Results indicated that the size of void and the particle volume were related with the amount of 2-butanone. The generation mechanism of voids was proposed.
文摘The semibatch emulsifier-free emulsion copolymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA) in the presence of 2-hydroxyethyl methacrylate (HEMA) initiated by K2S2O8 (PSP) was studied. The average particle diameter increases with an increase of total solids content, HEMA content, PSP content, ionic strength of the system and monomer feed rate, and decreases with the monomer feed ratio from 3/1 (MMA/BA mole.) to 1/3. The stability of this reaction system is improved by adding HEMA as nonionic comonomer. The high solids content (50%) latex with monodisperse particle can be obtained using this process.
文摘Monodisperse functional polymer microspheres with different particle size and with clean surface were prepared by batch soap-free emulsion polymerization of styrene, methyl methacrylate and acrylic acid in the presence of salts, and the influences of type and amount of electrolytes on polymerization process and particle morphology were investigated. Results showed that there was a critical concentration for different electrolyte to make polymerization process and the resultant emulsion stable, and the particle size increased with the increase of electrolyte concentration. The effect of metal ions was Ca^2+〉〉K^+〉Na^+〉Li^+, and the effect of haloids was Br〉Cl〉F. Keywords: Electrolyte, soap-free emulsion polymerization, polystyrene, latex particle morphology.