Structure of emulsifiers or functionality and molecular weight determines its rheology, emulsification and stability of emulsion explosives. Rheology of typical emulsifiers was studied by automatic rheometer. Relation...Structure of emulsifiers or functionality and molecular weight determines its rheology, emulsification and stability of emulsion explosives. Rheology of typical emulsifiers was studied by automatic rheometer. Relations between rheology and structural properties of typical emulsifiers were analyzed. Experimental results show that viscosity of emulsifiers didn' t change with shear rate at room temperature and appeared properties of Newtonian fluid. Viscosity of different component emulsifiers declines with temperature in different modes. The change of strain doesn' t affect modu- lus of emulsifiers. Loss modulus increases linearly with the increase of frequency in oscillation and storage modulus does non-linearly. The higher the temperature is, the lower change amplitude of loss modulus with frequency will be. The emulsifiers with imide and amide functionality for emulsion explosives have better shear properties at high temperature and better shapingness and stability at room temperature than other emulsifiers with ester and Sorbin Monoleate (SMO) functionality.展开更多
Whole wheat bread is widely available worldwide,but it is always associated with less desirable dough processibility,small loaf volume,firm and gritty texture,and other distinctive attributes compared to white bread.E...Whole wheat bread is widely available worldwide,but it is always associated with less desirable dough processibility,small loaf volume,firm and gritty texture,and other distinctive attributes compared to white bread.Emulsifiers are commonly used to improve dough handling and baking quality during bread production.In present study,five emulsifiers(diacetyl tartaric acid esters of mono-and diglycerides(DATEM),polysorbate 80,sodium stearoyl lactylate(SSL),soy lecithin,and sucrose esters)were added during dough preparation of the whole wheat flour at 0.2%,0.5%,and 1.0%(flour weight basis).Dough rheological behavior and bread quality attributes,such as specific loaf volume and hardness,were measured.The results showed that DATEM,sucrose esters,and SSL increased the resistance to extension of the dough,whereas soy lecithin and polysorbate 80 increased the extensibility.Soy lecithin and polysorbate 80 were the only emulsifiers that significantly increased loaf volume compared to the control.Adding higher levels(1.0%)of sucrose esters,polysorbate 80,and SSL increased the formation of amylose-lipid complex and mitigate the crumb staling during storage.The results suggested that the emulsifiers could be applied to contribute to optimum functional quality of whole wheat bread.展开更多
Surfactant food emulsifiers are among the most extensively used food additives.Like all authorized food additives,emulsifiers have been evaluated by risk assessors,who consider them as safe.However,there are growing c...Surfactant food emulsifiers are among the most extensively used food additives.Like all authorized food additives,emulsifiers have been evaluated by risk assessors,who consider them as safe.However,there are growing concerns among scientists about their possible harmful effects on intestinal barriers and microbiota.It is also suggested that emulsifier consumption might be one of the main causes of the rising incidence of a number of diseases,such as allergic diseases,celiac disease,type I diabetes and Crohn’s disease.Moreover,it has recently been suggested that emulsifier consumption might contribute to the development of metabolic syndrome and can promote colitis-associated colorectal cancer also.This paper provides an overview of the current scientific knowledge on possible effects of surfactant emulsifiers on intestinal barriers and also of regulatory risk assessment approaches.Our main objective is to reveal the reasons for the discrepancies between the opinions of risk assessors and the scientific world.We would like to draw the attention of the academic world to the need of specific in vivo and/or clinical studies for each emulsifier in order to help risk assessors make adequate evaluations and rule out with certainty that authorized food emulsifiers pose a safety concern to consumers’health.展开更多
The phenolic emulsifiers used in emulsified asphalt of micro-surfacing, which was the most important tools in the road maintenance, were investigated by control technology. Many factors influencing this reaction were ...The phenolic emulsifiers used in emulsified asphalt of micro-surfacing, which was the most important tools in the road maintenance, were investigated by control technology. Many factors influencing this reaction were studied and three kinds of phenolic emulsifiers were prepared without catalyst in ethanol. The performance was researched that 2-({2-[2-(2-Amino-ethylamino)-ethylamino]-ethyl-amino}-methyl)-4- nonyl-phenol (abbreviated as TETA) could be used in micro-surface. With addition of 0.5 % demulsifier, the mixing time was extended to 120 seconds obviously, and the cohesion torque (60 min) was 2.8 N*m, which satisfied the opening traffic time shorter than 1 h. The wet track abrasion (6 d) was lower than 807 g/m2, with interracial modifier added, but the load wheel was increased with interfacial modifier increasing. When the TETA: demulsifier: interracial modifier =3:1:3, excellent performance was obtained and the experimental results met the International Slurry Surfacing Association (ISSA) standard. The synthesis process of this emulsifier is simple and the performance used in micro-surface was excellent, so this kind of emulsifier could have a better application future.展开更多
Compatibility of polyisobutylene succinimide emulsifier with Span-80 emulsifier and with paraffine oil as continuous phase in emulsion explosives was studied by fluid viscosity with thermodynamic methods. The Obtained...Compatibility of polyisobutylene succinimide emulsifier with Span-80 emulsifier and with paraffine oil as continuous phase in emulsion explosives was studied by fluid viscosity with thermodynamic methods. The Obtained results showed that the compatibility was excellent, and that the coemulsifier from polyisobutylene succinimide and Span-80 could be formed emulsion co efficient effect at the interface between the continuous oil phase and discontinuous water phase.展开更多
Wheat bran, a principal byproduct of flour milling, stands as an abundant source of dietary fiber, yet its economic potential remains under-exploited in current forage applications. Arabinoxylan(AX), constituting the ...Wheat bran, a principal byproduct of flour milling, stands as an abundant source of dietary fiber, yet its economic potential remains under-exploited in current forage applications. Arabinoxylan(AX), constituting the core of dietary fiber, emerges as a versatile compound with multifaceted functionalities. Its nutritional significance,coupled with its role in cereal food processing, has prompted a surge of studies focusing on the valorization of wheat bran AX. Moreover, the hydrolyzed derivative, arabinoxylan oligosaccharides(AXOS), demonstrates prebiotic and antioxidant properties, offering potential avenues to mitigate the risk of chronic diseases. This review summarizes current knowledge on the valorization of wheat bran AX in terms of the processing and nutritional properties of AX. Moreover, multiple novel applications of AX in the materials area, including biodegradable food packaging films, delivery of bioactive substances as nanoparticles, and the manufacture of food emulsifiers, are also highlighted to extend the utilization of AX. This review underscores the immense potential of wheat bran AX, advocating for its exploitation not only as a nutritional asset but also as a primary ingredient in advanced materials. The synthesis of nutritional and materials perspectives accentuates the multifaceted utility of wheat bran AX, thereby paving the way for sustainable valorization pathways. By unraveling the latent potential within AX, this paper advocates for the holistic and sustainable utilization of wheat bran in diverse, value-added applications.展开更多
A critical pathway towards enhancing pulp mill biorefineries is to integrate the extraction and utilization of hemicelluloses into the pulping processes.Hence,an industrial pre-extraction strategy for hemicelluloses t...A critical pathway towards enhancing pulp mill biorefineries is to integrate the extraction and utilization of hemicelluloses into the pulping processes.Hence,an industrial pre-extraction strategy for hemicelluloses targeting eucalyptus kraft pulping process was developed.Alkaline solution or pulping white liquor was used to pre-extract hemicelluloses before the actual pulping process.The response surface methodology(RSM)technique was applied to investigate the most suitable conditions to maximize the yield of these hemicelluloses while simultaneously minimizing the damage to pulp yields and properties.Temperature(105 to 155℃),alkali concentration(3%to 8%),sulfidity(20%to 30%)and retention time(19 to 221 min)were combined to evaluate their effects on hemicellulose yields and chemical structures.The optimal pre-extraction conditions identified in this work(5.75%NaOH concentration,25%sulfidity at 135℃for 60 min)successfully allowed recovering 4.8%of hemicelluloses(based on the wood dry mass)and limited damages to pulp yields and properties.The cellulose content in pulp can even be increased by about 10%.Hemicellulose emulsification properties were also evaluated,which were comparable to synthetic emulsifiers.This study provides an industrial pathway to effectively separate and utilize wood hemicelluloses from the pulping process,which has the potential to improve the economy and material utilization of pulp and paper mills.展开更多
Fluid shortening is an important ingredient in the production of sponge cake. Peanut oil with 0, 43% and 85% of diacylglycerol content was used as the base oil. Different emulsifiers, such as glycerol monostearate, so...Fluid shortening is an important ingredient in the production of sponge cake. Peanut oil with 0, 43% and 85% of diacylglycerol content was used as the base oil. Different emulsifiers, such as glycerol monostearate, soy lecithin and sucrose ester, and their respective amounts, were investigated. It was found that the addition of emulsifiers had a positive effect on water-absorbing capacity, air-absorbing capacity and viscosity of the oils. Glycerol monostearate was the preferred emulsifier for fluid shortening with a recommended addition of 1.5%. The effects of different diacylglycerol content on fluid shortening and their impact on sponge cake production was also investigated. The onset oxidation temperature of the oil could be increased from 253.21 ℃ for PO-TAG-based fluid shortening to 263.70 ℃ for PO-DAG85-based fluid shortening. And the increase in diacylglycerol content leading to a lower specific gravity of the batter, which was 1.06 g/mL, 1.02 g/mL and 0.98 g/mL prepared by PO-DAG, PO-DAG43 and PO-DAG85 shortening, respectively. The results showed that diacylglycerols can be used as base oils in fluid shortening to improve the crystal network and stability of fluid shortenings, thereby reducing the specific gravity of the batter and improving the structural properties of the cake. This will extend the potential applications of diacylglycerols and increase the variety of base oils available for fluid shortening preparation.展开更多
Insulin entrapped nanocapsules to use polylactide (PLA) as the encapsulating material were prepared through a modified water-in-oil-in-water (W/O/W) emulsification and solvent evaporation method, The average parti...Insulin entrapped nanocapsules to use polylactide (PLA) as the encapsulating material were prepared through a modified water-in-oil-in-water (W/O/W) emulsification and solvent evaporation method, The average particle size of PLA nanocapsules obtained was decreased to (181.5 ± 8.4) nm, and capably adjusted from 180 to 370 nm by using different types and content of nonionic emulsifiers. The influence of emulsifiers on property of nanocapsules was discussed in detail. The effects of spans and tweens to modify the size of the nanocapsules were different, which can be due to the distribution of the surfactants on the inner interface between the inner water and oil of the double emulsion. The encapsulation efficiency and drug release of nanocapsules were affected obviously by the content and type of emulsifiers.展开更多
This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU))....This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU)).The results showed FG triggered the formation of loosely attached complex with PP via physical modification under gentle magnetic stirring at pH 7.0,while ultrasound played an important role in reducing protein size,increasing surface hydrophobicity and molecular fluidity onto oil-water interface.So ultrasound further enhanced the interaction of PP with FG,and produced the PPFGU complex with smaller droplet size,higherζ-potential and lower turbidity.Further,combination of FG and ultrasound improved the physical properties of PP with higher viscosity,stiffer gels(defined as higher elastic modulus),stronger hydrophobic properties,better thermal stability,and fast protein absorption rate.Therefore,the PPFGU coarse emulsion performed highest emulsifying activity index(EAI)and emulsion stability index(ESI)that the stabilized nanoemulsion obtained smallest droplet size,higherζ-potential,and longest storage stability.The combination of FG and ultrasonic treatment will be an effective approach to improving the emulsifying property and thermal stability of PP,which can be considered as a potential plant-based emulsifier applied in the food industry.展开更多
In recent years,with the improvement of the requirements of road performance,modified emulsified asphalts with better performance has gradually replaced the emulsified asphalt and become the primary material for road ...In recent years,with the improvement of the requirements of road performance,modified emulsified asphalts with better performance has gradually replaced the emulsified asphalt and become the primary material for road maintenance.This paper introduces the modified emulsified asphalt materials commonly used in pavement maintenance projects,definitions and modified mechanisms of polymerized styrene butadiene rubber(SBR)modified emulsified asphalt,styrene butadiene styrene block polymer(SBS)modified emulsified asphalt and waterborne epoxy resin(WER)modified emulsified asphalt are summarized.The analysis focused on comparing the effects of modifiers,preparation process,auxiliary additives,and other factors on the performance of modified emulsified asphalt.In this paper,it is considered that the greatest impact on the performance of emulsified asphalt is the modifier,emulsifier mainly affects the speed of breaking the emulsion,stabilizers on the basic performance of emulsified asphalt evaporative residue is small;and when the modifier is distributed in the asphalt in a network,the dosage at this time is the recommended optimum dosage.Finally,this study recommends that in the future,the polymer-asphalt compatibility can be improved through composite modification,chemical grafting and other methods to continue to develop broader applicability and better performance of modified emulsified asphalt.展开更多
Emulsifier is an important component of emulsified skin care BASE(matrix),and the common influencing factors affecting the skin feel of BASE are:emollient,thickeners,and emulsifier.The choice of emulsifier is crucial ...Emulsifier is an important component of emulsified skin care BASE(matrix),and the common influencing factors affecting the skin feel of BASE are:emollient,thickeners,and emulsifier.The choice of emulsifier is crucial to the skin feel of cosmetics.In this paper,12 classical emulsifiers were selected and 13 combinations of them were made.Thirteen creams were designed using the same formulation structure,their physicochemical indexes were determined,and their skin feel was tested and evaluated using five expert panel scores,with the test site being the hand.Physicochemical parameters included pH and viscosity.Skin feel indicators include:stickiness,silkiness,whiteheads,greasiness at the end of application,absorption,softness after use,etc.The BASE formulations of the creams were tested and evaluated by five experts.Recommendations were also made for the selection of emulsifier combinations in the design of cream BASE formulations.展开更多
[Objective] The properties of butachlor microemulsion were studied for developing a new formulation of new pesticides.[Method]AT method was used to determine the pseudo-ternary phase diagram to confirm the formulation...[Objective] The properties of butachlor microemulsion were studied for developing a new formulation of new pesticides.[Method]AT method was used to determine the pseudo-ternary phase diagram to confirm the formulation of butachlor microemulsion.Through the measurement of electrical conductivity,the W/O and O/W types in microemulsion region of butachlor/emulsifier/water system were confirmed and the change of phase behavior during preparation process was discussed.[Result]The dilution stability,low temperature stability,heat stability,ageing stability,density and viscosity etc.of butachlor microemulsion met the requirement of the experiments,which demonstrated the qualified quality of butachlor.The density decreased linearly with the increase of temperature and the change of viscosity with temperature conformed to Andrade equation.[Conclusion]The research was helpful to the application of butachlor microemulsion in pesticide formulation.展开更多
Urethane acrylate anionomer (APUA) as a kind of new type polymerizable emulsifier was synthesized using 2,4-toluene diisocyanate (TDI), polypropylene glycol (PPG), 2-hydroxyethyl methacrylate (HEMA) and dimethylolprop...Urethane acrylate anionomer (APUA) as a kind of new type polymerizable emulsifier was synthesized using 2,4-toluene diisocyanate (TDI), polypropylene glycol (PPG), 2-hydroxyethyl methacrylate (HEMA) and dimethylolpropionic acid (DMPA). The critical micelle concentration (CMC) of APUA was measured by the methods of conductance and surface tension. The comparative studies between polymerizable emulsifier AUPA and conventional emulsifier sodium dodecyl sulfate (SDS) were carried out in the emulsion polymerization of methyl methacrylate (MMA). Polymerization kinetics, stability, size and morphology of the latex particles were investigated. It was found that in APUA both water soluble initiator potassium persulfate (KPS) and oil soluble initiator 2,2'-azobisisobutyronitrile (AlBN) can start the reaction of MMA, and the polymerization rate and yield were very high. On using AlBN as an initiator, the conversion-time behavior of MMA with APUA as emulsifier was different to that of SDS as emulsifier, signifying a different nucleation mechanism of the polymer latex particle. The average size of the two kinds of particles is about 50 nm. The particle size decreases with increasing emulsifier concentration. On using KPS as the initiator, APUA as emulsifier, cross-linking hydrogel of PMMA would be formed, but SDS was used as emulsifier and the hydrogel of PMMA was not present.展开更多
The global oil and gas industry has a long standing initiative to develop and use the most environment friendly solutions in the exploration and exploitation of oil and gas resources to prevent any damage or degradati...The global oil and gas industry has a long standing initiative to develop and use the most environment friendly solutions in the exploration and exploitation of oil and gas resources to prevent any damage or degradation of other marine and terrestrial resources. This is reflected by increasing research in academics, research institutes and organizations around the globe to develop better and more environment friendly base fluids, viscosifiers, fluid loss additives, emulsifiers, lubricants, etc. to protect the local, regional and global environments, eco-systems, habitats and also the OHS of workers and professionals working in the oil and gas industry. This paper describes the development, testing and evaluation of several novel additives to demonstrate their suitability for oil and gas field applications to avoid any negative impact to the surrounding environment. Experimental results indicate that the newly developed additives provide desirable, similar or better performance with respect to conventional additives used by the industry and thus demonstrate their suitability for application in aqueous and non-aqueous fluid design. The plant-based organic additive identified to use as an ecofriendly viscosifier for aqueous mud system can also control the fluid loss behavior of clay free system and thus can act as a bi-functional additive. Several waste vegetable oil-based eco-friendly additives have been developed for their application as spotting fluids, base oil and emulsifiers for invert emulsion oil based mud. These additives have similar or better technical performance than the equivalents and the eco-friendly nature of the mud additives demonstrates their ability to perform the functional tasks with better protection of the surrounding environments.展开更多
Objective:To explore the effect of emulsified isoflurane(EI)on apoptosis of anoxia-reoxygenation neonatal rat cardiomyocytea and relevant protein expression.Methods:Cardiac muscle anoxiareoxygenation damage model was ...Objective:To explore the effect of emulsified isoflurane(EI)on apoptosis of anoxia-reoxygenation neonatal rat cardiomyocytea and relevant protein expression.Methods:Cardiac muscle anoxiareoxygenation damage model was established with culture in vitro neonatal rat cardiomyocytes.The cardiomyocytes were divided into control group,model group,fat emulsion group and EI group.The cardiomyocytes apoptosis rates and lactic dehydrogenase(LDH),superoxide dismutase(SOD)and malondialdehyde(MDA)index standardization were detected after relevant treatment The expression of apoptosis-related proteins Bel-2,Bax and Caspase-3 were detected with Western blot approach.Results:After hypoxia/reoxygenation(H/R)model was treated by EI,the cells apoptosis rate decreased and was dramatically below the fat emulsion group(P<0.05),Cardiomyocytes biochemical index detection presented that,compared with the control group that the LDH activity and MDA content dramatically increased(P<0.05),while the SOD activity notably decreased(P<0.05);compared with the H/R group,the SOD activity of the fat emulsion group and EI group increased(P<0.05);while the LDH activity and MDA content decreased(P<0.05).And the change of the EI group was more remarkable than the fat emulsion group(P<0.05).The Western blot analysis presented that,compared with the control group,the Bcl-2 protein expression of the other groups significantly decreased(P<0.05),the expressions of Bax protein and Caspase-3protein increased significantly(P<0.05);compared with H/R group,cardiomyocytes Bc1-2protein expression of EI group increased significantly(P<0.05),the expressions of Bax protein and Caspase-3 protein decreased significantly(P<0.05),and the change of EI group was more remarkable than the fat emulsion group(P<0.05).Conclusions:EI can inhabit the apoptosis of anoxia-reoxygenation damage model cardiomyocytes,and may he related to the up-regulation of expression of Bcl-2 and down-regulation of expression of Caspase-3 protein.展开更多
In order to study the application of gyratory compaction molding method in emulsified asphalt cold recycled mixture and optimize the relevant technical parameters, the study was carried out according to splitting stre...In order to study the application of gyratory compaction molding method in emulsified asphalt cold recycled mixture and optimize the relevant technical parameters, the study was carried out according to splitting strength, stability and water stability test;the design of the experiment involved changing gyration number, emulsified asphalt and water content, molded specimen temperature and other factors to analyze the volume parameters, mechanical properties and water stability. The results show that both the maximum dry density and dry and wet splitting strength ratio(DWSSR) of emulsified asphalt cold reclaimed mixture are improved by the rotary compacting method, while the porosity and the optimal dosage of water are reduced. Furthermore, with the increase of compaction times, the porosity and splitting strength index both change exponentially. DWSSR and porosity are consistent with quadratic functions. The use of gyratory compaction for 70 times at 25 °C and the optimum dosage of emulsified asphalt can be determined based on the splitting strength ratio. The high-temperature stability and water damage resistance of the pavement can be improved by the use of rotary compacting method effectively, and the early strength and road performance are higher than the regulatory requirements.展开更多
The desensitization degree of emulsion explosives (EE) was calculated with the peak pressure of explosion shock waves tested in water. To an explosive, the less the desensitization degree, the better the compression...The desensitization degree of emulsion explosives (EE) was calculated with the peak pressure of explosion shock waves tested in water. To an explosive, the less the desensitization degree, the better the compression resistance, so the compression resistance of an explosive can be compared and analyzed quantificationally with the desensitization degree. The influence of an emulsifier on the pressure desensitization of EE was studied, including the content and category of emulsifiers. Three kinds of emulsifiers (Span-80, compound emulsifier, and T-152) were used in the tests. The experimental results show that both the content and category of emulsifiers make a great effect on the pressure desensitization of EE. The desensitization degree of EE reduces with the emulsifier content being increased, but there is an optimal content of an emulsifier for the compression resistance of EE. While the content of Span-80 reaches 4wt%, the desensitization degree of EE becomes a minimal value, and augments somewhat if the emulsifier content is increased more. That is to say, the compression resistance of EE becomes the highest while the content of Span-80 is 4wt%, and the compression resistance will decline if the content of Span-80 is increased more. The compression resistance of the explosive emulsified by compound emulsifier is the highest among all the explosives, when the content of the whole components and manufacturing engineering are kept invariable.展开更多
The effects of ionic emulsifier, sodium dodecylbenzene sulfate (SDBS), on the formation of the multihollow structures in sub-micron sized polymer particles produced by alkali/acid posttreatment were investigated. The ...The effects of ionic emulsifier, sodium dodecylbenzene sulfate (SDBS), on the formation of the multihollow structures in sub-micron sized polymer particles produced by alkali/acid posttreatment were investigated. The original latex particles with narrow size distribution were synthesized by a new sequence emulsifier-free/emulsifier emulsion copolymerization of styrene (St) and methacrylic acid (MAA). Results indicated that the pore size decreased and the pore number increased with the increase of SDBS amount, and the morphology of the posttreated latex particles was also significantly influenced by the introducing time of SDBS in the preparation of the original latex particles, and a suitable introducing time was 3 h of polymerization. (c) 2007 Cheng You Kan. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Autophagy plays essential roles in cell survival.However,the functions and regulation of the autophagy-related proteins Atg5,LC3B,and Beclin 1 during anesthetic-induced developmental neurotoxicity remain unclear.This ...Autophagy plays essential roles in cell survival.However,the functions and regulation of the autophagy-related proteins Atg5,LC3B,and Beclin 1 during anesthetic-induced developmental neurotoxicity remain unclear.This study aimed to understand the autophagy pathways and mechanisms that affect neurotoxicity,induced by the anesthetic emulsified isoflurane,in rat fetal neural stem cells.Fetal neural stem cells were cultured,in vitro,and neurotoxicity was induced by emulsified isoflurane treatment.The effects of pretreatment with the autophagy inhibitors 3-methyladenine and bafilomycin and the effects of transfection with small interfering RNA against ATG5(siRNA-Atg5)were observed.Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay,and apoptosis was assessed using flow cytometry.Ultrastructural changes were analyzed through transmission electron microscopy.The levels of the autophagy-related proteins LC3B,Beclin 1,Atg5,and P62 and the pro-apoptosis-related protein caspase-3 were analyzed using western blot assay.The inhibition of cell proliferation and that of apoptosis rate increased after treatment with emulsified isoflurane.Autophagolysosomes,monolayer membrane formation due to lysosomal degradation,were observed.The autophagy-related proteins LC3B,Beclin 1,Atg5,and P62 and caspase-3 were upregulated.These results confirm that emulsified isoflurane can induce toxicity and autophagy in fetal neural stem cells.Pre-treatment with 3-methyladenine and bafilomycin increased the apoptosis rate in emulsified isoflurane-treated fetal neural stem cells,which indicated that the complete inhibition of autophagy does not alleviate emulsified isoflurane-induced fetal neural stem cell toxicity.Atg5 expression was decreased significantly by siRNA-Atg5 transfection,and cell proliferation was inhibited.These results verify that the Atg5 autophagy pathway can be regulated to maintain appropriate levels of autophagy,which can inhibit the neurotoxicity induced by emulsified isoflurane anesthetic in fetal neural stem cells.展开更多
基金Supported by Independent Research Projects of State Key Laboratory of Explosion Science and Technology(ZDKT08-05)
文摘Structure of emulsifiers or functionality and molecular weight determines its rheology, emulsification and stability of emulsion explosives. Rheology of typical emulsifiers was studied by automatic rheometer. Relations between rheology and structural properties of typical emulsifiers were analyzed. Experimental results show that viscosity of emulsifiers didn' t change with shear rate at room temperature and appeared properties of Newtonian fluid. Viscosity of different component emulsifiers declines with temperature in different modes. The change of strain doesn' t affect modu- lus of emulsifiers. Loss modulus increases linearly with the increase of frequency in oscillation and storage modulus does non-linearly. The higher the temperature is, the lower change amplitude of loss modulus with frequency will be. The emulsifiers with imide and amide functionality for emulsion explosives have better shear properties at high temperature and better shapingness and stability at room temperature than other emulsifiers with ester and Sorbin Monoleate (SMO) functionality.
基金the USDA National Institute of Food and Agriculture Hatch project KS17HA1008USDA Agricultural Research Service Cooperative Agreement 58-3020-9-017.
文摘Whole wheat bread is widely available worldwide,but it is always associated with less desirable dough processibility,small loaf volume,firm and gritty texture,and other distinctive attributes compared to white bread.Emulsifiers are commonly used to improve dough handling and baking quality during bread production.In present study,five emulsifiers(diacetyl tartaric acid esters of mono-and diglycerides(DATEM),polysorbate 80,sodium stearoyl lactylate(SSL),soy lecithin,and sucrose esters)were added during dough preparation of the whole wheat flour at 0.2%,0.5%,and 1.0%(flour weight basis).Dough rheological behavior and bread quality attributes,such as specific loaf volume and hardness,were measured.The results showed that DATEM,sucrose esters,and SSL increased the resistance to extension of the dough,whereas soy lecithin and polysorbate 80 increased the extensibility.Soy lecithin and polysorbate 80 were the only emulsifiers that significantly increased loaf volume compared to the control.Adding higher levels(1.0%)of sucrose esters,polysorbate 80,and SSL increased the formation of amylose-lipid complex and mitigate the crumb staling during storage.The results suggested that the emulsifiers could be applied to contribute to optimum functional quality of whole wheat bread.
文摘Surfactant food emulsifiers are among the most extensively used food additives.Like all authorized food additives,emulsifiers have been evaluated by risk assessors,who consider them as safe.However,there are growing concerns among scientists about their possible harmful effects on intestinal barriers and microbiota.It is also suggested that emulsifier consumption might be one of the main causes of the rising incidence of a number of diseases,such as allergic diseases,celiac disease,type I diabetes and Crohn’s disease.Moreover,it has recently been suggested that emulsifier consumption might contribute to the development of metabolic syndrome and can promote colitis-associated colorectal cancer also.This paper provides an overview of the current scientific knowledge on possible effects of surfactant emulsifiers on intestinal barriers and also of regulatory risk assessment approaches.Our main objective is to reveal the reasons for the discrepancies between the opinions of risk assessors and the scientific world.We would like to draw the attention of the academic world to the need of specific in vivo and/or clinical studies for each emulsifier in order to help risk assessors make adequate evaluations and rule out with certainty that authorized food emulsifiers pose a safety concern to consumers’health.
基金Funded by the National Key Basic Research and Development Plan(No.2012CB724601)the Jiangsu Provincial Natural Science Foundation(No.BK 2008503)
文摘The phenolic emulsifiers used in emulsified asphalt of micro-surfacing, which was the most important tools in the road maintenance, were investigated by control technology. Many factors influencing this reaction were studied and three kinds of phenolic emulsifiers were prepared without catalyst in ethanol. The performance was researched that 2-({2-[2-(2-Amino-ethylamino)-ethylamino]-ethyl-amino}-methyl)-4- nonyl-phenol (abbreviated as TETA) could be used in micro-surface. With addition of 0.5 % demulsifier, the mixing time was extended to 120 seconds obviously, and the cohesion torque (60 min) was 2.8 N*m, which satisfied the opening traffic time shorter than 1 h. The wet track abrasion (6 d) was lower than 807 g/m2, with interracial modifier added, but the load wheel was increased with interfacial modifier increasing. When the TETA: demulsifier: interracial modifier =3:1:3, excellent performance was obtained and the experimental results met the International Slurry Surfacing Association (ISSA) standard. The synthesis process of this emulsifier is simple and the performance used in micro-surface was excellent, so this kind of emulsifier could have a better application future.
文摘Compatibility of polyisobutylene succinimide emulsifier with Span-80 emulsifier and with paraffine oil as continuous phase in emulsion explosives was studied by fluid viscosity with thermodynamic methods. The Obtained results showed that the compatibility was excellent, and that the coemulsifier from polyisobutylene succinimide and Span-80 could be formed emulsion co efficient effect at the interface between the continuous oil phase and discontinuous water phase.
基金supported by the National Key Research and Development Plan Project (2022YFD2301401)Young Elite Scientists Sponsorship Program by the CAST (2022QNRC001)+4 种基金the Outstanding Youth Science Fund Project of Natural Science Foundation of Jiangsu Province (BK20211576)the Central Government Guides Local Funds (ZYYD2023A13)Key Technology Research and Development Program of Jiangsu Province (BE2023370)Hainan Province (ZDYF2022XDNY233)a project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions。
文摘Wheat bran, a principal byproduct of flour milling, stands as an abundant source of dietary fiber, yet its economic potential remains under-exploited in current forage applications. Arabinoxylan(AX), constituting the core of dietary fiber, emerges as a versatile compound with multifaceted functionalities. Its nutritional significance,coupled with its role in cereal food processing, has prompted a surge of studies focusing on the valorization of wheat bran AX. Moreover, the hydrolyzed derivative, arabinoxylan oligosaccharides(AXOS), demonstrates prebiotic and antioxidant properties, offering potential avenues to mitigate the risk of chronic diseases. This review summarizes current knowledge on the valorization of wheat bran AX in terms of the processing and nutritional properties of AX. Moreover, multiple novel applications of AX in the materials area, including biodegradable food packaging films, delivery of bioactive substances as nanoparticles, and the manufacture of food emulsifiers, are also highlighted to extend the utilization of AX. This review underscores the immense potential of wheat bran AX, advocating for its exploitation not only as a nutritional asset but also as a primary ingredient in advanced materials. The synthesis of nutritional and materials perspectives accentuates the multifaceted utility of wheat bran AX, thereby paving the way for sustainable valorization pathways. By unraveling the latent potential within AX, this paper advocates for the holistic and sustainable utilization of wheat bran in diverse, value-added applications.
基金supported by the Natural Science Foundation of Guangdong Province(2023A1515030211)the National Natural Science Foundation of China(22278157)Guangzhou Science and Technology Program(2023B03J1365).
文摘A critical pathway towards enhancing pulp mill biorefineries is to integrate the extraction and utilization of hemicelluloses into the pulping processes.Hence,an industrial pre-extraction strategy for hemicelluloses targeting eucalyptus kraft pulping process was developed.Alkaline solution or pulping white liquor was used to pre-extract hemicelluloses before the actual pulping process.The response surface methodology(RSM)technique was applied to investigate the most suitable conditions to maximize the yield of these hemicelluloses while simultaneously minimizing the damage to pulp yields and properties.Temperature(105 to 155℃),alkali concentration(3%to 8%),sulfidity(20%to 30%)and retention time(19 to 221 min)were combined to evaluate their effects on hemicellulose yields and chemical structures.The optimal pre-extraction conditions identified in this work(5.75%NaOH concentration,25%sulfidity at 135℃for 60 min)successfully allowed recovering 4.8%of hemicelluloses(based on the wood dry mass)and limited damages to pulp yields and properties.The cellulose content in pulp can even be increased by about 10%.Hemicellulose emulsification properties were also evaluated,which were comparable to synthetic emulsifiers.This study provides an industrial pathway to effectively separate and utilize wood hemicelluloses from the pulping process,which has the potential to improve the economy and material utilization of pulp and paper mills.
基金The Bureau of Science and Information of Guangzhou under grant 2024A04J3254the National Natural Science Foundation of China under grant 32272341the Department of Science and Technology of Guangdong Province under grant numbers 2022B0202010003。
文摘Fluid shortening is an important ingredient in the production of sponge cake. Peanut oil with 0, 43% and 85% of diacylglycerol content was used as the base oil. Different emulsifiers, such as glycerol monostearate, soy lecithin and sucrose ester, and their respective amounts, were investigated. It was found that the addition of emulsifiers had a positive effect on water-absorbing capacity, air-absorbing capacity and viscosity of the oils. Glycerol monostearate was the preferred emulsifier for fluid shortening with a recommended addition of 1.5%. The effects of different diacylglycerol content on fluid shortening and their impact on sponge cake production was also investigated. The onset oxidation temperature of the oil could be increased from 253.21 ℃ for PO-TAG-based fluid shortening to 263.70 ℃ for PO-DAG85-based fluid shortening. And the increase in diacylglycerol content leading to a lower specific gravity of the batter, which was 1.06 g/mL, 1.02 g/mL and 0.98 g/mL prepared by PO-DAG, PO-DAG43 and PO-DAG85 shortening, respectively. The results showed that diacylglycerols can be used as base oils in fluid shortening to improve the crystal network and stability of fluid shortenings, thereby reducing the specific gravity of the batter and improving the structural properties of the cake. This will extend the potential applications of diacylglycerols and increase the variety of base oils available for fluid shortening preparation.
文摘Insulin entrapped nanocapsules to use polylactide (PLA) as the encapsulating material were prepared through a modified water-in-oil-in-water (W/O/W) emulsification and solvent evaporation method, The average particle size of PLA nanocapsules obtained was decreased to (181.5 ± 8.4) nm, and capably adjusted from 180 to 370 nm by using different types and content of nonionic emulsifiers. The influence of emulsifiers on property of nanocapsules was discussed in detail. The effects of spans and tweens to modify the size of the nanocapsules were different, which can be due to the distribution of the surfactants on the inner interface between the inner water and oil of the double emulsion. The encapsulation efficiency and drug release of nanocapsules were affected obviously by the content and type of emulsifiers.
基金financially supported by grants from the Key Scientific Research Projects of Hubei Province(2020BCA086)the National Key Research and Development Program of China(2017YFD0400200)+3 种基金Wuhan Application Fundamental Frontier Project of China(2020020601012270)the National Natural Science Foundation of China(31771938)the China Agriculture Research System of MOF and MARAthe Wuhan Achievement Transformation Project(2019030703011505)。
文摘This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU)).The results showed FG triggered the formation of loosely attached complex with PP via physical modification under gentle magnetic stirring at pH 7.0,while ultrasound played an important role in reducing protein size,increasing surface hydrophobicity and molecular fluidity onto oil-water interface.So ultrasound further enhanced the interaction of PP with FG,and produced the PPFGU complex with smaller droplet size,higherζ-potential and lower turbidity.Further,combination of FG and ultrasound improved the physical properties of PP with higher viscosity,stiffer gels(defined as higher elastic modulus),stronger hydrophobic properties,better thermal stability,and fast protein absorption rate.Therefore,the PPFGU coarse emulsion performed highest emulsifying activity index(EAI)and emulsion stability index(ESI)that the stabilized nanoemulsion obtained smallest droplet size,higherζ-potential,and longest storage stability.The combination of FG and ultrasonic treatment will be an effective approach to improving the emulsifying property and thermal stability of PP,which can be considered as a potential plant-based emulsifier applied in the food industry.
基金The authors acknowledge the financial support from National Natural Science Foundation of China(No.51968006).
文摘In recent years,with the improvement of the requirements of road performance,modified emulsified asphalts with better performance has gradually replaced the emulsified asphalt and become the primary material for road maintenance.This paper introduces the modified emulsified asphalt materials commonly used in pavement maintenance projects,definitions and modified mechanisms of polymerized styrene butadiene rubber(SBR)modified emulsified asphalt,styrene butadiene styrene block polymer(SBS)modified emulsified asphalt and waterborne epoxy resin(WER)modified emulsified asphalt are summarized.The analysis focused on comparing the effects of modifiers,preparation process,auxiliary additives,and other factors on the performance of modified emulsified asphalt.In this paper,it is considered that the greatest impact on the performance of emulsified asphalt is the modifier,emulsifier mainly affects the speed of breaking the emulsion,stabilizers on the basic performance of emulsified asphalt evaporative residue is small;and when the modifier is distributed in the asphalt in a network,the dosage at this time is the recommended optimum dosage.Finally,this study recommends that in the future,the polymer-asphalt compatibility can be improved through composite modification,chemical grafting and other methods to continue to develop broader applicability and better performance of modified emulsified asphalt.
文摘Emulsifier is an important component of emulsified skin care BASE(matrix),and the common influencing factors affecting the skin feel of BASE are:emollient,thickeners,and emulsifier.The choice of emulsifier is crucial to the skin feel of cosmetics.In this paper,12 classical emulsifiers were selected and 13 combinations of them were made.Thirteen creams were designed using the same formulation structure,their physicochemical indexes were determined,and their skin feel was tested and evaluated using five expert panel scores,with the test site being the hand.Physicochemical parameters included pH and viscosity.Skin feel indicators include:stickiness,silkiness,whiteheads,greasiness at the end of application,absorption,softness after use,etc.The BASE formulations of the creams were tested and evaluated by five experts.Recommendations were also made for the selection of emulsifier combinations in the design of cream BASE formulations.
基金Supported by Henan Innovation Project for University Prominent Research Talents(2004KYCX010)~~
文摘[Objective] The properties of butachlor microemulsion were studied for developing a new formulation of new pesticides.[Method]AT method was used to determine the pseudo-ternary phase diagram to confirm the formulation of butachlor microemulsion.Through the measurement of electrical conductivity,the W/O and O/W types in microemulsion region of butachlor/emulsifier/water system were confirmed and the change of phase behavior during preparation process was discussed.[Result]The dilution stability,low temperature stability,heat stability,ageing stability,density and viscosity etc.of butachlor microemulsion met the requirement of the experiments,which demonstrated the qualified quality of butachlor.The density decreased linearly with the increase of temperature and the change of viscosity with temperature conformed to Andrade equation.[Conclusion]The research was helpful to the application of butachlor microemulsion in pesticide formulation.
文摘Urethane acrylate anionomer (APUA) as a kind of new type polymerizable emulsifier was synthesized using 2,4-toluene diisocyanate (TDI), polypropylene glycol (PPG), 2-hydroxyethyl methacrylate (HEMA) and dimethylolpropionic acid (DMPA). The critical micelle concentration (CMC) of APUA was measured by the methods of conductance and surface tension. The comparative studies between polymerizable emulsifier AUPA and conventional emulsifier sodium dodecyl sulfate (SDS) were carried out in the emulsion polymerization of methyl methacrylate (MMA). Polymerization kinetics, stability, size and morphology of the latex particles were investigated. It was found that in APUA both water soluble initiator potassium persulfate (KPS) and oil soluble initiator 2,2'-azobisisobutyronitrile (AlBN) can start the reaction of MMA, and the polymerization rate and yield were very high. On using AlBN as an initiator, the conversion-time behavior of MMA with APUA as emulsifier was different to that of SDS as emulsifier, signifying a different nucleation mechanism of the polymer latex particle. The average size of the two kinds of particles is about 50 nm. The particle size decreases with increasing emulsifier concentration. On using KPS as the initiator, APUA as emulsifier, cross-linking hydrogel of PMMA would be formed, but SDS was used as emulsifier and the hydrogel of PMMA was not present.
文摘The global oil and gas industry has a long standing initiative to develop and use the most environment friendly solutions in the exploration and exploitation of oil and gas resources to prevent any damage or degradation of other marine and terrestrial resources. This is reflected by increasing research in academics, research institutes and organizations around the globe to develop better and more environment friendly base fluids, viscosifiers, fluid loss additives, emulsifiers, lubricants, etc. to protect the local, regional and global environments, eco-systems, habitats and also the OHS of workers and professionals working in the oil and gas industry. This paper describes the development, testing and evaluation of several novel additives to demonstrate their suitability for oil and gas field applications to avoid any negative impact to the surrounding environment. Experimental results indicate that the newly developed additives provide desirable, similar or better performance with respect to conventional additives used by the industry and thus demonstrate their suitability for application in aqueous and non-aqueous fluid design. The plant-based organic additive identified to use as an ecofriendly viscosifier for aqueous mud system can also control the fluid loss behavior of clay free system and thus can act as a bi-functional additive. Several waste vegetable oil-based eco-friendly additives have been developed for their application as spotting fluids, base oil and emulsifiers for invert emulsion oil based mud. These additives have similar or better technical performance than the equivalents and the eco-friendly nature of the mud additives demonstrates their ability to perform the functional tasks with better protection of the surrounding environments.
基金supported by the Scientific Research Foundation of Health Department of Human Province(B2009-011)
文摘Objective:To explore the effect of emulsified isoflurane(EI)on apoptosis of anoxia-reoxygenation neonatal rat cardiomyocytea and relevant protein expression.Methods:Cardiac muscle anoxiareoxygenation damage model was established with culture in vitro neonatal rat cardiomyocytes.The cardiomyocytes were divided into control group,model group,fat emulsion group and EI group.The cardiomyocytes apoptosis rates and lactic dehydrogenase(LDH),superoxide dismutase(SOD)and malondialdehyde(MDA)index standardization were detected after relevant treatment The expression of apoptosis-related proteins Bel-2,Bax and Caspase-3 were detected with Western blot approach.Results:After hypoxia/reoxygenation(H/R)model was treated by EI,the cells apoptosis rate decreased and was dramatically below the fat emulsion group(P<0.05),Cardiomyocytes biochemical index detection presented that,compared with the control group that the LDH activity and MDA content dramatically increased(P<0.05),while the SOD activity notably decreased(P<0.05);compared with the H/R group,the SOD activity of the fat emulsion group and EI group increased(P<0.05);while the LDH activity and MDA content decreased(P<0.05).And the change of the EI group was more remarkable than the fat emulsion group(P<0.05).The Western blot analysis presented that,compared with the control group,the Bcl-2 protein expression of the other groups significantly decreased(P<0.05),the expressions of Bax protein and Caspase-3protein increased significantly(P<0.05);compared with H/R group,cardiomyocytes Bc1-2protein expression of EI group increased significantly(P<0.05),the expressions of Bax protein and Caspase-3 protein decreased significantly(P<0.05),and the change of EI group was more remarkable than the fat emulsion group(P<0.05).Conclusions:EI can inhabit the apoptosis of anoxia-reoxygenation damage model cardiomyocytes,and may he related to the up-regulation of expression of Bcl-2 and down-regulation of expression of Caspase-3 protein.
基金Projects(51708048,51704040)supported by the National Natural Science Foundation of ChinaProject(17C0050)supported by the Scientific Research Project of Hunan Provincial Department of Education for General Scholars,China+1 种基金Project(kfj160103)supported by the Open Fund of State Engineering Laboratory of Highway Maintenance Technology(Changsha University of Science&Technology),ChinaProject supported by the Open Fund of Guangxi Key Lab of Road Structure and Materials,China
文摘In order to study the application of gyratory compaction molding method in emulsified asphalt cold recycled mixture and optimize the relevant technical parameters, the study was carried out according to splitting strength, stability and water stability test;the design of the experiment involved changing gyration number, emulsified asphalt and water content, molded specimen temperature and other factors to analyze the volume parameters, mechanical properties and water stability. The results show that both the maximum dry density and dry and wet splitting strength ratio(DWSSR) of emulsified asphalt cold reclaimed mixture are improved by the rotary compacting method, while the porosity and the optimal dosage of water are reduced. Furthermore, with the increase of compaction times, the porosity and splitting strength index both change exponentially. DWSSR and porosity are consistent with quadratic functions. The use of gyratory compaction for 70 times at 25 °C and the optimum dosage of emulsified asphalt can be determined based on the splitting strength ratio. The high-temperature stability and water damage resistance of the pavement can be improved by the use of rotary compacting method effectively, and the early strength and road performance are higher than the regulatory requirements.
基金This work was financially supported by the National Natural Science Foundation of China (No.50574004).
文摘The desensitization degree of emulsion explosives (EE) was calculated with the peak pressure of explosion shock waves tested in water. To an explosive, the less the desensitization degree, the better the compression resistance, so the compression resistance of an explosive can be compared and analyzed quantificationally with the desensitization degree. The influence of an emulsifier on the pressure desensitization of EE was studied, including the content and category of emulsifiers. Three kinds of emulsifiers (Span-80, compound emulsifier, and T-152) were used in the tests. The experimental results show that both the content and category of emulsifiers make a great effect on the pressure desensitization of EE. The desensitization degree of EE reduces with the emulsifier content being increased, but there is an optimal content of an emulsifier for the compression resistance of EE. While the content of Span-80 reaches 4wt%, the desensitization degree of EE becomes a minimal value, and augments somewhat if the emulsifier content is increased more. That is to say, the compression resistance of EE becomes the highest while the content of Span-80 is 4wt%, and the compression resistance will decline if the content of Span-80 is increased more. The compression resistance of the explosive emulsified by compound emulsifier is the highest among all the explosives, when the content of the whole components and manufacturing engineering are kept invariable.
文摘The effects of ionic emulsifier, sodium dodecylbenzene sulfate (SDBS), on the formation of the multihollow structures in sub-micron sized polymer particles produced by alkali/acid posttreatment were investigated. The original latex particles with narrow size distribution were synthesized by a new sequence emulsifier-free/emulsifier emulsion copolymerization of styrene (St) and methacrylic acid (MAA). Results indicated that the pore size decreased and the pore number increased with the increase of SDBS amount, and the morphology of the posttreated latex particles was also significantly influenced by the introducing time of SDBS in the preparation of the original latex particles, and a suitable introducing time was 3 h of polymerization. (c) 2007 Cheng You Kan. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金financially supported by the National Natural Science Foundation of China,No.81401279(to ZYY)the Natural Science Foundation of Shanghai,China,No.18ZR1443100(to ZYY)+2 种基金the Innovation Center of Translational Medicine Collaboration,Shanghai Jiao Tong University School of Medicine of China,No.TM201729(to ZYY)the Youth Talent Fund of International Peace Maternity and Child Health Hospital,Shanghai Jiao Tong University School of Medicine of China in 2014(to ZYY)the“WUXIN”Project of International Peace Maternity and Child Health Hospital,Shanghai Jiao Tong University School of Medicine of China in 2019,No.2018-38(to ZYY)。
文摘Autophagy plays essential roles in cell survival.However,the functions and regulation of the autophagy-related proteins Atg5,LC3B,and Beclin 1 during anesthetic-induced developmental neurotoxicity remain unclear.This study aimed to understand the autophagy pathways and mechanisms that affect neurotoxicity,induced by the anesthetic emulsified isoflurane,in rat fetal neural stem cells.Fetal neural stem cells were cultured,in vitro,and neurotoxicity was induced by emulsified isoflurane treatment.The effects of pretreatment with the autophagy inhibitors 3-methyladenine and bafilomycin and the effects of transfection with small interfering RNA against ATG5(siRNA-Atg5)were observed.Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay,and apoptosis was assessed using flow cytometry.Ultrastructural changes were analyzed through transmission electron microscopy.The levels of the autophagy-related proteins LC3B,Beclin 1,Atg5,and P62 and the pro-apoptosis-related protein caspase-3 were analyzed using western blot assay.The inhibition of cell proliferation and that of apoptosis rate increased after treatment with emulsified isoflurane.Autophagolysosomes,monolayer membrane formation due to lysosomal degradation,were observed.The autophagy-related proteins LC3B,Beclin 1,Atg5,and P62 and caspase-3 were upregulated.These results confirm that emulsified isoflurane can induce toxicity and autophagy in fetal neural stem cells.Pre-treatment with 3-methyladenine and bafilomycin increased the apoptosis rate in emulsified isoflurane-treated fetal neural stem cells,which indicated that the complete inhibition of autophagy does not alleviate emulsified isoflurane-induced fetal neural stem cell toxicity.Atg5 expression was decreased significantly by siRNA-Atg5 transfection,and cell proliferation was inhibited.These results verify that the Atg5 autophagy pathway can be regulated to maintain appropriate levels of autophagy,which can inhibit the neurotoxicity induced by emulsified isoflurane anesthetic in fetal neural stem cells.