期刊文献+
共找到325篇文章
< 1 2 17 >
每页显示 20 50 100
Moisture Absorption and Desorption in an Ionomer-Based Encapsulant:A Type of Self-Breathing Encapsulant for CIGS Thin-Film PV Modules 被引量:2
1
作者 Miao Yang Raymund Schäffler +1 位作者 Tobias Repmann Kay Orgassa 《Engineering》 SCIE EI 2020年第12期1403-1407,共5页
As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing t... As an alternative to conventional encapsulation concepts for a double glass photovoltaic(PV)module,we introduce an innovative ionomer-based multi-layer encapsulant,by which the application of additional edge sealing to prevent moisture penetration is not required.The spontaneous moisture absorption and desorption of this encapsulant and its raw materials,poly(ethylene-co-acrylic acid)and an ionomer,are analyzed under different climatic conditions in this work.The relative air humidity is thermodynamically the driving force for these inverse processes and determines the corresponding equilibrium moisture content(EMC).Higher air humidity results in a larger EMC.The homogenization of the absorbed water molecules is a diffusion-controlled process,in which temperature plays a dominant role.Nevertheless,the diffusion coefficient at a higher temperature is still relatively low.Hence,under normal climatic conditions for the application of PV modules,we believe that the investigated ionomer-based encapsulant can“breathe”the humidity:During the day,when there is higher relative humidity,it“inhales”(absorbs)moisture and restrains it within the outer edge of the module;then at night,when there is a lower relative humidity,it“exhales”(desorbs)the moisture.In this way,the encapsulant protects the cell from moisture ingress. 展开更多
关键词 IONOMER encapsulant Moisture absorption and desorption Cu(In Ga)Se2 photovoltaic module
下载PDF
Effects of Organic Peroxides on the Curing Behavior of EVA Encapsulant Resin 被引量:1
2
作者 Kanthamas Thaworn Piyapong Buahom Surat Areerat 《Open Journal of Polymer Chemistry》 2012年第2期77-85,共9页
Compounds of poly(ethylene-co-vinyl acetate) (EVA with vinyl acetate content 33%) with three different organic per- oxides, namely, dialkyl peroxide, peroxyester peroxide, and peroxyketal peroxide, were prepared with ... Compounds of poly(ethylene-co-vinyl acetate) (EVA with vinyl acetate content 33%) with three different organic per- oxides, namely, dialkyl peroxide, peroxyester peroxide, and peroxyketal peroxide, were prepared with a twin screws extruder and a two-roll mixing mill. The cure behavior of the EVA compounds was analyzed from rheographs, which were obtained by a moving die rheometer (MDR) at various curing temperatures between 150?C to 170?C. The effects of organic peroxides on cure behavior were examined. The dynamic curing obtained by the torque rheometer provided sufficient experimental data to show that dialkyl peroxide is not suitable because it has a high half-life temperature and its by-products can discolor the final product. Peroxyester peroxide is good for curing at temperatures in the range of 150?C to 160?C, which accomplished an ultimate cure within 5 to 8 minutes. Also, the peroxyketal peroxide has higher performance, which decreased the optimum cure time to 3 minutes. The thermal decomposition mechanism of organic peroxide was applied to explain how the cure behavior is affected by generated free radicals. 展开更多
关键词 EVA encapsulant Solar Cell Organic PEROXIDE CROSSLINKING Dynamic CURE
下载PDF
High-silica faujasite zeolite-tailored metal encapsulation for the low-temperature production of pentanoic biofuels
3
作者 Wenhao Cui Yuanshuai Liu +11 位作者 Pengfei Guo Zhijie Wu Liqun Kang Huawei Geng Shengqi Chu Linying Wang Dong Fan Zhenghao Jia Haifeng Qi Wenhao Luo Peng Tian Zhongmin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期552-560,I0012,共10页
Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulatio... Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity. 展开更多
关键词 High-silica zeolite Y Metal encapsulation Bifunctional catalysis HYDRODEOXYGENATION Biofuels
下载PDF
Utilization of pH-driven methods to fortify nanoemulsions with multiple polyphenols
4
作者 Hualu Zhou Bingjing Zheng David Julian McClements 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1943-1950,共8页
Simple but effective methods are required to incorporate multiple bioactive polyphenols into delivery systems to increase their dispersibility,stability and bioavailability.We developed and tested three p Hdriven prot... Simple but effective methods are required to incorporate multiple bioactive polyphenols into delivery systems to increase their dispersibility,stability and bioavailability.We developed and tested three p Hdriven protocols for creating nanoemulsions loaded with multiple lipophilic polyphenols.These protocols differed in how the different polyphenols were incorporated into the nanoemulsions.The impact of these three methods on the formation,properties,and gastrointestinal fate of nanoemulsions loaded with curcumin,resveratrol,and quercetin was investigated.The three methods produced nanoemulsions with similar initial particle properties:droplet diameters(0.15,0.16,and 0.15μm)and zeta-potentials(–59,–58,and–58 m V),respectively.However,the average encapsulation efficiencies(82%,88%,and 61%),gastrointestinal stabilities(83%,97%,and 29%)and bioaccessibilities(77%,90%,and 73%)for curcumin,resveratrol,and quercetin were somewhat different.In particular,more quercetin degradation occurred using the approach that held it under alkaline conditions for extended periods.In general,the p H-driven method provides researchers with a versatile approach of incorporating multiple polyphenols with different characteristics into functional food and beverages using a simple and inexpensive method. 展开更多
关键词 POLYPHENOLS pH-Driven encapsulation NANOEMULSIONS Gastrointestinal fate Functional foods
下载PDF
Structure,bioavailability and physicochemical properties of icariin-soymilk nanoparticle
5
作者 Jinping Wang Lingrong Wen +4 位作者 Yueming Jiang Hong Zhu Weizheng Sun Guangyi Dai Bao Yang 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期972-981,共10页
Soymilk is a natural nanocarrier.However,the performance of flavonoid-soymilk nano-complex remains unclear.In this work,icariin-soymilk nano-complexes(ISNCs)were successfully fabricated and characterized.The effects o... Soymilk is a natural nanocarrier.However,the performance of flavonoid-soymilk nano-complex remains unclear.In this work,icariin-soymilk nano-complexes(ISNCs)were successfully fabricated and characterized.The effects of high-pressure homogenization(HPH)treatment on structure and physicochemical properties of soymilk and nano-complexes were investigated.HPH treatment could significantly improve the surface hydrophobicity and interfacial activity of soymilk.The soymilk with HPH treatment could significantly improve the water solubility(20 folds),thermal stability and bioavailability of icariin.The highest encapsulation efficiency(93.28%),loading capacity(39.09μg/mg),ζ-potentia(absolute value,31.20 mV)and bioavailability(72.14%)were observed in HSI-200(200 bar of homogenization pressure).While HSI-500(500 bar of homogenization pressure)showed the smallest particle size(183.73 nm).ISNCs showed a rougher surface and an irregular lamellar structure with large amount of fine particles by using Cryo-SEM,suggesting that icariin was encapsulated in soymilk.These data supplied a novel strategy to improve the performance of icariin in functional foods. 展开更多
关键词 Encapsulation efficiency Flavonoid High pressure homogenization Loading capacity Nano-complex
下载PDF
Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation
6
作者 Xinyi Dai Ping Ping +4 位作者 Depeng Kong Xinzeng Gao Yue Zhang Gongquan Wang Rongqi Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期226-238,I0006,共14页
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan... Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well. 展开更多
关键词 Inorganic phase change material Carbon nanotube Battery thermal management Thermal runaway propagation Fire resistance ENCAPSULATION
下载PDF
Ethanol steam reforming over Ni/ZSM-5 nanosheet for hydrogen production
7
作者 Porapak Suriya Shanshan Xu +8 位作者 Shengzhe Ding Sarayute Chansai Yilai Jiao Joseph Hurd Daniel Lee Yuxin Zhang Christopher Hardacre Prasert Reubroycharoen Xiaolei Fan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期247-256,共10页
Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the ... Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C. 展开更多
关键词 ZSM-5 nanosheet In situ encapsulation Ni catalyst Ethanol steam reforming Hydrogen production
下载PDF
Abdominal cocoon syndrome-a rare culprit behind small bowel ischemia and obstruction:Three case reports
8
作者 Witcha Vipudhamorn Tawan Juthasilaparut +2 位作者 Pawit Sutharat Suwan Sanmee Ekkarin Supatrakul 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第3期955-965,共11页
BACKGROUND Abdominal cocoon syndrome(ACS)represents a category within sclerosing encapsulating peritonitis,characterized by the encapsulation of internal organs with a fibrous,cocoon-like membrane of unknown origin,re... BACKGROUND Abdominal cocoon syndrome(ACS)represents a category within sclerosing encapsulating peritonitis,characterized by the encapsulation of internal organs with a fibrous,cocoon-like membrane of unknown origin,resulting in bowel obstruction and ischemia.Diagnosing this condition before surgery poses a cha-llenge,often requiring confirmation during laparotomy.In this context,we depict three instances of ACS:One linked to intestinal obstruction,the second exclu-sively manifesting as intestinal ischemia without any obstruction,and the final case involving a discrepancy between the radiologist and the surgeon.CASE SUMMARY Three male patients,aged 53,58,and 61 originating from Northern Thailand,arrived at our medical facility complaining of abdominal pain without any prior surgeries.Their vital signs remained stable during the assessment.The diagnosis of abdominal cocoon was confirmed through abdominal computed tomography(CT)before surgery.In the first case,the CT scan revealed capsules around the small bowel loops,showing no enhancement,along with mesenteric congestion affecting both small and large bowel loops,without a clear obstruction.The second case showed intestinal obstruction due to an encapsulated capsule on the CT scan.In the final case,a patient presented with recurring abdominal pain.Initially,the radiologist suspected enteritis as the cause after the CT scan.However,a detailed review led the surgeon to suspect encapsulating peritoneal sclerosis(ACS)and subsequently perform surgery.The surgical procedure involved complete removal of the encapsulating structure,resection of a portion of the small bowel,and end-to-end anastomosis.No complications occurred during surgery,and the patients had a smooth recovery after surgery,eventually discharged in good health.The histopathological examination of the fibrous membrane(cocoon)across all cases consistently revealed the presence of fibro-collagenous tissue,without any indications of malignancy.CONCLUSION Individuals diagnosed with abdominal cocoons commonly manifest vague symptoms of abdominal discomfort.An elevated degree of clinical suspicion,combined with the application of appropriate radiological evaluations,markedly improves the probability of identifying the abdominal cocoon before surgical intervention.In cases of complete bowel obstruction or ischemia,the established norm is the comprehensive removal of the peritoneal sac as part of standard care.Resection with intestinal anastomosis is advised solely when ischemia and gangrene have been confirmed. 展开更多
关键词 Sclerosing encapsulation peritonitis Abdominal cocoon Peritoneal Fibrosis Peritoneal encapsulation syndrome Intestinal obstruction Surgery Case report
下载PDF
Comparative Analysis of Reaction to Fire and Flammability of Hemp Shives Insulation Boards with Incorporated Microencapsulated Phase Change Materials
9
作者 Inga Zotova Edgars Kirilovs Laura Ziemele 《Journal of Renewable Materials》 EI CAS 2024年第3期603-613,共11页
Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce... Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce building energy consumption.With the wider availability of microencapsulated PCM,there is an opportunity to develop a new type of insulating materials,combinate PCM with traditional insulation materials for latent heat energy storage.These materials are typically flammable and are located on the interior wall finishing yet there has been no detailed assessment of their fire performance.In this research work prototypes of low-density insulating boards for indoor spaces from hemp shives using carbamide resin binder and cold pressing were studied.Bench-scale cone calorimeter tests were conducted to evaluate fire risk,with a focus on assessing material flammability properties and the influence of PCM on the results.In this research,the amount of smoke,heat release rate,effective heat of combustion,specific extinction coefficient,mass loss,carbon dioxide yield,specific loss factor,ignition time of hemp straws samples and samples of hemp straws with 10%and without PCM admixture were compared.There is a risk of flammability for PCM and their fire reaction has not been evaluated when incorporating PCM into interior wall finishing boards.The obtained results can be used by designers to balance the potential energy savings of using PCM with a more complete understanding and predictability of the associated fire risk when using the proposed boards.It also allows for appropriate risk mitigation strategies. 展开更多
关键词 Encapsuled phase change material renewable resources reaction to fire FLAMMABILITY
下载PDF
Nomogram prediction of vessels encapsulating tumor clusters in small hepatocellular carcinoma≤3 cm based on enhanced magnetic resonance imaging
10
作者 Hui-Lin Chen Rui-Lin He +5 位作者 Meng-Ting Gu Xing-Yu Zhao Kai-Rong Song Wen-Jie Zou Ning-Yang Jia Wan-Min Liu 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第5期1808-1820,共13页
BACKGROUND Vessels encapsulating tumor clusters(VETC)represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma(HCC).However,it seems that no one have focu... BACKGROUND Vessels encapsulating tumor clusters(VETC)represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma(HCC).However,it seems that no one have focused on predicting VETC status in small HCC(sHCC).This study aimed to develop a new nomogram for predicting VETC positivity using preoperative clinical data and image features in sHCC(≤3 cm)patients.AIM To construct a nomogram that combines preoperative clinical parameters and image features to predict patterns of VETC and evaluate the prognosis of sHCC patients.METHODS A total of 309 patients with sHCC,who underwent segmental resection and had their VETC status confirmed,were included in the study.These patients were recruited from three different hospitals:Hospital 1 contributed 177 patients for the training set,Hospital 2 provided 78 patients for the test set,and Hospital 3 provided 54 patients for the validation set.Independent predictors of VETC were identified through univariate and multivariate logistic analyses.These independent predictors were then used to construct a VETC prediction model for sHCC.The model’s performance was evaluated using the area under the curve(AUC),calibration curve,and clinical decision curve.Additionally,Kaplan-Meier survival analysis was performed to confirm whether the predicted VETC status by the model is associated with early recurrence,just as it is with the actual VETC status and early recurrence.RESULTS Alpha-fetoprotein_lg10,carbohydrate antigen 199,irregular shape,non-smooth margin,and arterial peritumoral enhancement were identified as independent predictors of VETC.The model incorporating these predictors demonstrated strong predictive performance.The AUC was 0.811 for the training set,0.800 for the test set,and 0.791 for the validation set.The calibration curve indicated that the predicted probability was consistent with the actual VETC status in all three sets.Furthermore,the decision curve analysis demonstrated the clinical benefits of our model for patients with sHCC.Finally,early recurrence was more likely to occur in the VETC-positive group compared to the VETC-negative group,regardless of whether considering the actual or predicted VETC status.CONCLUSION Our novel prediction model demonstrates strong performance in predicting VETC positivity in sHCC(≤3 cm)patients,and it holds potential for predicting early recurrence.This model equips clinicians with valuable information to make informed clinical treatment decisions. 展开更多
关键词 Small hepatocellular carcinoma Vessels encapsulating tumor clusters NOMOGRAM Magnetic resonance imaging MULTICENTER
下载PDF
Preoperatively predicting vessels encapsulating tumor clusters in hepatocellular carcinoma:Machine learning model based on contrast-enhanced computed tomography
11
作者 Chao Zhang Hai Zhong +3 位作者 Fang Zhao Zhen-Yu Ma Zheng-Jun Dai Guo-Dong Pang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第3期857-874,共18页
BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in a... BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in an invasion independent manner,and was regarded as an independent risk factor for poor prognosis in hepatocellular carcinoma(HCC).AIM To develop and validate a preoperative nomogram using contrast-enhanced computed tomography(CECT)to predict the presence of VETC+in HCC.METHODS We retrospectively evaluated 190 patients with pathologically confirmed HCC who underwent CECT scanning and immunochemical staining for cluster of differentiation 34 at two medical centers.Radiomics analysis was conducted on intratumoral and peritumoral regions in the portal vein phase.Radiomics features,essential for identifying VETC+HCC,were extracted and utilized to develop a radiomics model using machine learning algorithms in the training set.The model’s performance was validated on two separate test sets.Receiver operating characteristic(ROC)analysis was employed to compare the identified performance of three models in predicting the VETC status of HCC on both training and test sets.The most predictive model was then used to constructed a radiomics nomogram that integrated the independent clinical-radiological features.ROC and decision curve analysis were used to assess the performance characteristics of the clinical-radiological features,the radiomics features and the radiomics nomogram.RESULTS The study included 190 individuals from two independent centers,with the majority being male(81%)and a median age of 57 years(interquartile range:51-66).The area under the curve(AUC)for the combined radiomics features selected from the intratumoral and peritumoral areas were 0.825,0.788,and 0.680 in the training set and the two test sets.A total of 13 features were selected to construct the Rad-score.The nomogram,combining clinicalradiological and combined radiomics features could accurately predict VETC+in all three sets,with AUC values of 0.859,0.848 and 0.757.Decision curve analysis revealed that the radiomics nomogram was more clinically useful than both the clinical-radiological feature and the combined radiomics models.CONCLUSION This study demonstrates the potential utility of a CECT-based radiomics nomogram,incorporating clinicalradiological features and combined radiomics features,in the identification of VETC+HCC. 展开更多
关键词 Hepatocellular carcinoma Vessels encapsulating tumor clusters Intratumoral and peritumoral regions Radiomics features Nomog
下载PDF
Dynamic Monte Carlo Simulation on Polymerization of Encapsulant
12
作者 Jin Chen Jiong-Hua Xiang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2019年第2期157-163,共7页
Based on the preparative experiments of the light-emitting diode(LED) encapsulant, three types of monomer models with different functional groups are carried out to study the polymerization process by dynamic Monte Ca... Based on the preparative experiments of the light-emitting diode(LED) encapsulant, three types of monomer models with different functional groups are carried out to study the polymerization process by dynamic Monte Carlo(DMC) simulation and bond fluctuation model(BFM). We calculate the degree of polymerization, the radius of gyration and the frequency of void spheres to discuss the polymerization process, the molecular size and the spatial distribution at different volume fractions and proportions. Our results are in agreement with Grest's decay rate and Flory's scale law. Simulations show that the polymerization process depends on the appropriate volume fraction and proportion exceedingly, and the volume contraction in the polymerization process can also be observed in this study.These investigations could provide some insights into the understanding of the polymerization process of the encapsulant and help us to adjust the parameters in later experiments. 展开更多
关键词 Dynamic MONTE Carlo(DMC)simulation BOND FLUCTUATION model(BFM) LED encapsulant
原文传递
Creating burdock polysaccharide-oleanolic acid-ursolic acid nanoparticles to deliver enhanced anti-inflammatory effects:fabrication,structural characterization and property evaluation 被引量:3
13
作者 Shanshan Zhu Zhichang Qiu +5 位作者 Xuguang Qiao Geoffrey I.N.Waterhouse Wenqing Zhu Wenting Zhao Qiuxia He Zhenjia Zheng 《Food Science and Human Wellness》 SCIE CSCD 2023年第2期454-466,共13页
This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encaps... This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encapsulating OA+UA with ALPs(ALP:OA+UA,50:1;OA:UA,1:1)changed the crystalline nature to a more amorphous state through hydrogen bonding and involving O-H/C-O/O-C-O groups.ALP-OA/UA nanoparticles had a particle size and zeta potential(in water)of 199.1 nm/-7.15 mV,with a narrow unimodal size distribution,and excellent pH,salt solution,temperature and storage stability.Compared with ALPs,ALPOA/UA nanoparticles showed enhanced anti-inflammatory activity(especially at a dose of 100μg/mL)in a CuSO-induced zebrafish inflammation model via down-regulating the NF-κB signalling pathway and gene expression of associated transcription factors and cytokines(TNF-α,IL-1βand IL-8).Therefore,ALP-based nanoparticles are natural and anti-inflammatory carriers for hydrophobic bioactive molecules. 展开更多
关键词 ENCAPSULATION Structural features Particle size Zeta potential Thermodynamic properties In vivo verification
下载PDF
Silicalite-1 zeolite encapsulated Fe nanocatalyst for Fenton-like degradation of methylene blue
14
作者 Hongwei Guo Linyuan Chen +2 位作者 Xueying Zhang Huanhao Chen Yan Shao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期251-259,共9页
Encapsulation of Fe nanoparticles in zeolite is a promising way to significantly improve the catalytic activity and stability of Fe-based catalysts during the degradation process of organic pollutants.Herein,Fe nanoca... Encapsulation of Fe nanoparticles in zeolite is a promising way to significantly improve the catalytic activity and stability of Fe-based catalysts during the degradation process of organic pollutants.Herein,Fe nanocatalysts were encapsulated into silicalite-1(S-1)zeolite by using a ligand-protected method(with dicyandiamide(DCD)as a organic ligand)under direct hydrothermal synthesis condition.High-resolution transmission electron microscopy(HRTEM)results confirmed the high dispersion of Fe nanocatalysts which were successfully encapsulated within the voids among the primary particles of the S-1 zeolite.The developed S-1 zeolite encapsulated Fe nanocatalyst(Fe@S-1)exhibited significantly improved catalytic activity and reusability in the catalytic degradation process of methylene blue(MB).Specifically,the developed Fe0.021@S-1 catalyst showed high catalytic degradation activity,giving a high MB degradation efficiency of 100%in 30 min,outperformed the conventional impregnated catalyst(Fe/S-1).Moreover,the Fe@S-1 catalyst afforded an outstanding stability,showing only ca.7.9%activity loss after five cycling tests,while the Fe/S-1 catalyst presented a significantly activity loss of 50.9%after only three cycles.Notably,the encapsulation strategy enabled a relatively lower Fe loading in the Fe@S-1 catalyst in comparison with that of the Fe/S-1 catalyst,i.e.,0.35%vs.0.81%(mass).Radical scavenging experiments along with electron spin resonance(ESR)measurements confirmed that the major role ofOH in the MB degradation process.Specifically,Fe@S-1 catalyst with high molar ratio of[Fe(DCD)]Cl3 is beneficial to form Fe complexes/nanoclusters in the voids(which has large pore size of 1–2 nm)among the primary particles of the zeolite,and thus improving the diffusion and accessibility of reactants to Fe active sites,and thus exhibiting a relatively higher degradation efficiency.This work demonstrates that zeolite-encapsulated Fe nanocatalysts present potential applications in the advanced oxidation of wastewater treatment. 展开更多
关键词 ZEOLITE ENCAPSULATION Fe nanocatalyst Degradation Methylene blue
下载PDF
How to stabilize standard perovskite solar cells to withstand operating conditions under an ambient environment for more than 1000 hours using simple and universal encapsulation
15
作者 Nikolai A.Belich Andrey A.Petrov +4 位作者 Pavel A.Ivlev Natalia N.Udalova Alla A.Pustovalova Eugene A.Goodilin Alexey B.Tarasov 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期246-252,I0008,共8页
We introduce a simple and universal scalable encapsulation strategy for perovskite solar cells based on thermal vacuum evaporation of MgF2or MoO3-xcapping layer followed by sealing the device with glass and UV-curable... We introduce a simple and universal scalable encapsulation strategy for perovskite solar cells based on thermal vacuum evaporation of MgF2or MoO3-xcapping layer followed by sealing the device with glass and UV-curable polymer.The proposed encapsulation method is beneficial to most of the other known encapsulation approaches being fully harmless to perovskite and transporting layers and processible at room temperature.Vacuum deposition of the capping layer promotes efficient removal of water,oxygen and organic solvent residuals from the device prior to sealing and could be easily performed using standard equipment for metal electrode deposition.The proposed strategy is transferrable to any lab-scale perovskite solar cell prototypes regardless of their geometry and architecture and results in excellent stability of the devices in ambient air and long operating conditions.Upon the 1000 hours stability test at ambient air(30%-60% RH),the cells preserved 92.9% of their initial efficiency on average under 1 Sun illumination at constant maximum power point tracking(MPPT,ISOS-L-1) and over 96% under sto rage in the dark(ISOS-D-1),thus evidencing for the high effectiveness of the proposed encapsulation approach. 展开更多
关键词 Perovskite solar cells Halide perovskites ENCAPSULATION High stability ISOS-L-1
下载PDF
Peptide self‐assembly as a strategy for facile immobilization of redox enzymes on carbon electrodes
16
作者 Itzhak Grinberg Oren Ben‐Zvi +1 位作者 Lihi Adler‐Abramovich Iftach Yacoby 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期15-30,共16页
Redox-enzyme‐mediated electrochemical processes such as hydrogen production,nitrogen fixation,and CO_(2) reduction are at the forefront of the green chemistry revolution.To scale up,the inefficient two‐dimensional(2... Redox-enzyme‐mediated electrochemical processes such as hydrogen production,nitrogen fixation,and CO_(2) reduction are at the forefront of the green chemistry revolution.To scale up,the inefficient two‐dimensional(2D)immobilization of redox enzymes on working electrodes must be replaced by an efficient dense 3D system.Fabrication of 3D electrodes was demonstrated by embedding enzymes in polymer matrices.However,several requirements,such as simple immobilization,prolonged stability,and resistance to enzyme leakage,still need to be addressed.The study presented here aims to overcome these gaps by immobilizing enzymes in a supramolecular hydrogel formed by the self‐assembly of the peptide hydrogelator fluorenylmethyloxycarbonyldiphenylalanine.Harnessing the self‐assembly process avoids the need for tedious and potentially harmful chemistry,allowing the rapid loading of enzymes on a 3D electrode under mild conditions.Using the[FeFe]hydrogenase enzyme,high enzyme loads,prolonged resistance against electrophoresis,and highly efficient hydrogen production are demonstrated.Further,this enzyme retention is shown to arise from its interaction with the peptide nanofibrils.Finally,this method is successfully used to retain other redox enzymes,paving the way for a variety of enzyme‐mediated electrochemical applications. 展开更多
关键词 3D electrode enzymes encapsulation H2 production HYDROGENASE peptide hydrogel
下载PDF
Green and sustainably designed intercalation-type anodes for emerging lithium dual-ion batteries with high energy density
17
作者 Tejaswi Tanaji Salunkhe Abhijit Nanaso Kadam +1 位作者 Jaehyun Hur Il Tae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期466-478,I0011,共14页
Lithium dual-ion batteries(LiDIBs)have attracted significant attention owing to the growing demand for modern anode materials with high energy density.Herein,rust encapsulated in graphite was achieved by utilizing amm... Lithium dual-ion batteries(LiDIBs)have attracted significant attention owing to the growing demand for modern anode materials with high energy density.Herein,rust encapsulated in graphite was achieved by utilizing ammonium bicarbonate(ABC)as a template,which resulted in mesoporous Fe3O4embedded in expanded carbon(Fe3O4@G(ABC))via simple ball milling followed by annealing.This self-assembly approach for graphite-encapsulated Fe3O4composites helps enhance the electrochemical performance,such as the cycling stability and superior rate stability(at 3 A/g),with improved conductivity in Li DIBs.Specifically,Fe3O4@G-1:4(ABC)and Fe3O4@G-1:6(ABC)anodes in a half-cell at 0.1 A/g delivered initial capacities of 1390.6 and 824.4 mA h g^(-1),respectively.The optimized anode(Fe3O4@G-1:4(ABC))coupled with the expanded graphite(EG)cathode in Li DIBs provided a substantial initial specific capacity of 260.9 mA h g^(-1)at 1 A/g and a specific capacity regain of 106.3 mA h g^(-1)(at 0.1 A/g)after 250 cycles,with a very high energy density of 387.9 Wh kg^(-1).The strategically designed Fe3O4@G accelerated Li-ion kinetics,alleviated the volume change,and provided an efficient conductive network with excellent mechanical flexibility,resulting in exceptional performance in Li DIBs.Various postmortem analyses of the anode and cathode(XRD,Raman,EDS,and XPS)are presented to explain the intercalation-type electrochemical mechanisms of Li DIBs.This study offers several advantages,including safety,low cost,sustainability,environmental friendliness,and high energy density. 展开更多
关键词 Lithium dual-ion batteries Rust encapsulated graphite Ammonium bicarbonate Intercalation-type anode Energy density
下载PDF
Anti-carbon deposition performance of twinned HZSM-5 encapsulated Ru in the toluene alkylation with methanol
18
作者 Guixian Li Tao Tian +4 位作者 Hanxu Li Jinlian Li Tingna Shao Qi Zhang Peng Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期1-8,共8页
Toluene methylation with methanol to produce para-xylene has been extensively and intensively studied.However,the methanol-to-hydrocarbons(MTH)side reaction in this reaction is difficult to be inhibited,which will cau... Toluene methylation with methanol to produce para-xylene has been extensively and intensively studied.However,the methanol-to-hydrocarbons(MTH)side reaction in this reaction is difficult to be inhibited,which will cause a mass of carbon deposition and cover the catalyst surface,resulting in catalyst deactivation.Here,a dual-functional Ru@HZSM-5 catalyst with high para-selectivity and low carbon deposition was prepared by encapsulating Ru metal with HZSM-5.According to catalytic performance studies,the Ru@HZSM-5 catalyst produced xylene selectivity of 98%and para-xylene selectivity of 96%.Meanwhile,we find that carbon precursors(e.g.ethylene)were very little when Ru catalyst was used,but the results of HZSM-5 catalyst were completely opposite.Ru@HZSM-5 catalyst achieves a lower carbon deposition rate of only 6%of HZSM-5.The main possible reason for this is that the initial C-C bond between methanol and the olefin is difficult to form. 展开更多
关键词 Twinned HZSM-5 Encapsulated metal Shape-selective catalysis Anti-carbon deposition
下载PDF
Complexation with pre-formed“empty”V-type starch for encapsulation of aroma compounds
19
作者 Jingyi Zhou Lingyan Kong 《Food Science and Human Wellness》 SCIE CSCD 2023年第2期488-494,共7页
Aroma compounds are low-molecular-weight organic volatile molecules and are broadly utilized in the food industry.However,due to their high volatility and evaporative losses during processing and storage,the stabiliza... Aroma compounds are low-molecular-weight organic volatile molecules and are broadly utilized in the food industry.However,due to their high volatility and evaporative losses during processing and storage,the stabilization of these volatile ingredients using encapsulation is a commonly investigated practice.Complexation of aroma compounds using starch inclusion complex could be a potential approach due to the hydrophobicity of the left-handed single helical structure.In the present study,we used starch of three different V-type structures,namely V,V,and V,to encapsulate six different aroma compounds,including1-decanol(DN),cis-3-hexen-1-ol(HN),4-allylanisole(AN),γ-decalactone(DA),trans-cinnamaldehyde(CA),and citral(CT).The formed inclusion complexes samples were characterized using complementary techniques,including X-ray diffraction(XRD)and differential scanning calorimetry(DSC).The results showed that upon complexation with aroma compounds,all V-subtypes retained their original crystalline structures.However,different trends of crystallinity were observed for each type of the prepared inclusion complexes.Additionally,among three V-type starches,V-type starch formed inclusion complexes with aroma compounds most efficiently and promoted the formation of FormⅡcomplex.This study suggested that the structure of aroma compounds and the type of V starch could both affect the complexation properties. 展开更多
关键词 STARCH “Empty”V-type AROMA Inclusion complex ENCAPSULATION
下载PDF
Finned Zn-MFI zeolite encapsulated noble metal nanoparticle catalysts for the oxidative dehydrogenation of propane with carbon dioxide
20
作者 En-Hui Yuan Yiming Niu +7 位作者 Xing Huang Meng Li Jun Bao Yong-Hong Song Bingsen Zhang Zhao-Tie Liu Marc-Georg Willinger Zhong-Wen Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期479-491,I0011,共14页
Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existin... Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix. 展开更多
关键词 Oxidative dehydrogenation PROPANE Carbon dioxide Finned Zn-MFI zeolite Encapsulated noble metal nanoparticles
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部