期刊文献+
共找到15,322篇文章
< 1 2 250 >
每页显示 20 50 100
A lightweight symmetric image encryption cryptosystem in wavelet domain based on an improved sine map
1
作者 陈柏池 黄林青 +2 位作者 蔡述庭 熊晓明 张慧 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期266-276,共11页
In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive ... In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC. 展开更多
关键词 image encryption discrete wavelet transform 1D-chaotic system selective encryption Gaussianization operation
下载PDF
Quantization and Event-Triggered Policy Design for Encrypted Networked Control
2
作者 Yongxia Shi Ehsan Nekouei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期946-955,共10页
This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-trigger... This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results. 展开更多
关键词 Cyber-security encrypted control event-triggered control(ETC) networked control systems(NCSs) semi-homomorphic encryption
下载PDF
Efficient single-pixel imaging encrypted transmission based on 3D Arnold transformation
3
作者 梁振宇 王朝瑾 +4 位作者 王阳阳 高皓琪 朱东涛 许颢砾 杨星 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期378-386,共9页
Single-pixel imaging(SPI)can transform 2D or 3D image data into 1D light signals,which offers promising prospects for image compression and transmission.However,during data communication these light signals in public ... Single-pixel imaging(SPI)can transform 2D or 3D image data into 1D light signals,which offers promising prospects for image compression and transmission.However,during data communication these light signals in public channels will easily draw the attention of eavesdroppers.Here,we introduce an efficient encryption method for SPI data transmission that uses the 3D Arnold transformation to directly disrupt 1D single-pixel light signals and utilizes the elliptic curve encryption algorithm for key transmission.This encryption scheme immediately employs Hadamard patterns to illuminate the scene and then utilizes the 3D Arnold transformation to permutate the 1D light signal of single-pixel detection.Then the transformation parameters serve as the secret key,while the security of key exchange is guaranteed by an elliptic curve-based key exchange mechanism.Compared with existing encryption schemes,both computer simulations and optical experiments have been conducted to demonstrate that the proposed technique not only enhances the security of encryption but also eliminates the need for complicated pattern scrambling rules.Additionally,this approach solves the problem of secure key transmission,thus ensuring the security of information and the quality of the decrypted images. 展开更多
关键词 single-pixel imaging 3D Arnold transformation elliptic curve encryption image encryption
下载PDF
A chaotic hierarchical encryption/watermark embedding scheme for multi-medical images based on row-column confusion and closed-loop bi-directional diffusion
4
作者 张哲祎 牟俊 +1 位作者 Santo Banerjee 曹颖鸿 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期228-237,共10页
Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is desi... Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is designed,and a multiimage encryption(MIE)algorithm with row and column confusion and closed-loop bi-directional diffusion is adopted in the paper.While ensuring secure communication of medical image information,people with different security levels have different levels of decryption keys,and differentiated visual effects can be obtained by using the strong sensitivity of chaotic keys.The highest security level can obtain decrypted images without watermarks,and at the same time,patient information and copyright attribution can be verified by obtaining watermark images.The experimental results show that the scheme is sufficiently secure as an MIE scheme with visualized differences and the encryption and decryption efficiency is significantly improved compared to other works. 展开更多
关键词 chaotic hierarchical encryption multi-medical image encryption differentiated visual effects row-column confusion closed-loop bi-directional diffusion transform domain watermark embedding
下载PDF
Two-dimensional-lag complex logistic map with complex parameters and its encryption application
5
作者 张芳芳 武金波 +3 位作者 寇磊 马凤英 吴黎明 张雪 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期324-335,共12页
With the rapid development of internet technology,security protection of information has become more and more prominent,especially information encryption.Considering the great advantages of chaotic encryption,we propo... With the rapid development of internet technology,security protection of information has become more and more prominent,especially information encryption.Considering the great advantages of chaotic encryption,we propose a 2D-lag complex logistic map with complex parameters(2D-LCLMCP)and corresponding encryption schemes.Firstly,we present the model of the 2D-LCLMCP and analyze its chaotic properties and system stability through fixed points,Lyapunov exponent,bifurcation diagram,phase diagram,etc.Secondly,a block cipher algorithm based on the 2D-LCLMCP is proposed,the plaintext data is preprocessed using a pseudorandom sequence generated by the 2D-LCLMCP.Based on the generalized Feistel cipher structure,a round function F is constructed using dynamic S-box and DNA encoding rules as the core of the block cipher algorithm.The generalized Feistel cipher structure consists of two F functions,four XOR operations,and one permutation operation per round.The symmetric dynamic round keys that change with the plaintext are generated by the 2D-LCLMCP.Finally,experimental simulation and performance analysis tests are conducted.The results show that the block cipher algorithm has low complexit,good diffusion and a large key space.When the block length is 64 bits,only six rounds of encryption are required to provide sufficient security and robustness against cryptographic attacks. 展开更多
关键词 logistic map block ciphers chaotic system encryptION
下载PDF
Chaotic CS Encryption:An Efficient Image Encryption Algorithm Based on Chebyshev Chaotic System and Compressive Sensing
6
作者 Mingliang Sun Jie Yuan +1 位作者 Xiaoyong Li Dongxiao Liu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2625-2646,共22页
Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgori... Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors. 展开更多
关键词 Image encryption chaotic system compressive sensing arnold transform
下载PDF
Robust zero-watermarking algorithm based on discrete wavelet transform and daisy descriptors for encrypted medical image
7
作者 Yiyi Yuan Jingbing Li +3 位作者 Jing Liu Uzair Aslam Bhatti Zilong Liu Yen-wei Chen 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期40-53,共14页
In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical ... In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical professionals.To address this problem,the authors propose a robust feature watermarking algorithm for encrypted medical images based on multi-stage discrete wavelet transform(DWT),Daisy descriptor,and discrete cosine transform(DCT).The algorithm initially encrypts the original medical image through DWT-DCT and Logistic mapping.Subsequently,a 3-stage DWT transformation is applied to the encrypted medical image,with the centre point of the LL3 sub-band within its low-frequency component serving as the sampling point.The Daisy descriptor matrix for this point is then computed.Finally,a DCT transformation is performed on the Daisy descriptor matrix,and the low-frequency portion is processed using the perceptual hashing algorithm to generate a 32-bit binary feature vector for the medical image.This scheme utilises cryptographic knowledge and zero-watermarking technique to embed watermarks without modifying medical images and can extract the watermark from test images without the original image,which meets the basic re-quirements of medical image watermarking.The embedding and extraction of water-marks are accomplished in a mere 0.160 and 0.411s,respectively,with minimal computational overhead.Simulation results demonstrate the robustness of the algorithm against both conventional attacks and geometric attacks,with a notable performance in resisting rotation attacks. 展开更多
关键词 daisy descriptor DCT DWT encryption domain medical image ZERO-WATERMARKING
下载PDF
Double quantum images encryption scheme based on chaotic system
8
作者 蒋社想 李杨 +1 位作者 石锦 张茹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期305-320,共16页
This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaoti... This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities. 展开更多
关键词 double quantum images encryption chaotic system pixel scrambling XOR operation
下载PDF
Securing Cloud-Encrypted Data:Detecting Ransomware-as-a-Service(RaaS)Attacks through Deep Learning Ensemble
9
作者 Amardeep Singh Hamad Ali Abosaq +5 位作者 Saad Arif Zohaib Mushtaq Muhammad Irfan Ghulam Abbas Arshad Ali Alanoud AlMazroa 《Computers, Materials & Continua》 SCIE EI 2024年第4期857-873,共17页
Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries,especially in light of the growing number of cybersecurity threats.A major and ... Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries,especially in light of the growing number of cybersecurity threats.A major and everpresent threat is Ransomware-as-a-Service(RaaS)assaults,which enable even individuals with minimal technical knowledge to conduct ransomware operations.This study provides a new approach for RaaS attack detection which uses an ensemble of deep learning models.For this purpose,the network intrusion detection dataset“UNSWNB15”from the Intelligent Security Group of the University of New South Wales,Australia is analyzed.In the initial phase,the rectified linear unit-,scaled exponential linear unit-,and exponential linear unit-based three separate Multi-Layer Perceptron(MLP)models are developed.Later,using the combined predictive power of these three MLPs,the RansoDetect Fusion ensemble model is introduced in the suggested methodology.The proposed ensemble technique outperforms previous studieswith impressive performance metrics results,including 98.79%accuracy and recall,98.85%precision,and 98.80%F1-score.The empirical results of this study validate the ensemble model’s ability to improve cybersecurity defenses by showing that it outperforms individual MLPmodels.In expanding the field of cybersecurity strategy,this research highlights the significance of combined deep learning models in strengthening intrusion detection systems against sophisticated cyber threats. 展开更多
关键词 Cloud encryption RAAS ENSEMBLE threat detection deep learning CYBERSECURITY
下载PDF
Novel self-embedding holographic watermarking image encryption protection scheme
10
作者 王励年 周楠润 +2 位作者 孙博 曹颖鸿 牟俊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期281-290,共10页
For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the... For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance. 展开更多
关键词 color image encryption Hilbert transform self-embedding watermark holographic technology
下载PDF
Color Image Compression and Encryption Algorithm Based on 2D Compressed Sensing and Hyperchaotic System
11
作者 Zhiqing Dong Zhao Zhang +1 位作者 Hongyan Zhou Xuebo Chen 《Computers, Materials & Continua》 SCIE EI 2024年第2期1977-1993,共17页
With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color image... With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective. 展开更多
关键词 Image encryption image compression hyperchaotic system compressed sensing
下载PDF
Privacy-Preserving Multi-Keyword Fuzzy Adjacency Search Strategy for Encrypted Graph in Cloud Environment
12
作者 Bin Wu Xianyi Chen +5 位作者 Jinzhou Huang Caicai Zhang Jing Wang Jing Yu Zhiqiang Zhao Zhuolin Mei 《Computers, Materials & Continua》 SCIE EI 2024年第3期3177-3194,共18页
In a cloud environment,outsourced graph data is widely used in companies,enterprises,medical institutions,and so on.Data owners and users can save costs and improve efficiency by storing large amounts of graph data on... In a cloud environment,outsourced graph data is widely used in companies,enterprises,medical institutions,and so on.Data owners and users can save costs and improve efficiency by storing large amounts of graph data on cloud servers.Servers on cloud platforms usually have some subjective or objective attacks,which make the outsourced graph data in an insecure state.The issue of privacy data protection has become an important obstacle to data sharing and usage.How to query outsourcing graph data safely and effectively has become the focus of research.Adjacency query is a basic and frequently used operation in graph,and it will effectively promote the query range and query ability if multi-keyword fuzzy search can be supported at the same time.This work proposes to protect the privacy information of outsourcing graph data by encryption,mainly studies the problem of multi-keyword fuzzy adjacency query,and puts forward a solution.In our scheme,we use the Bloom filter and encryption mechanism to build a secure index and query token,and adjacency queries are implemented through indexes and query tokens on the cloud server.Our proposed scheme is proved by formal analysis,and the performance and effectiveness of the scheme are illustrated by experimental analysis.The research results of this work will provide solid theoretical and technical support for the further popularization and application of encrypted graph data processing technology. 展开更多
关键词 PRIVACY-PRESERVING adjacency query multi-keyword fuzzy search encrypted graph
下载PDF
Coexistence behavior of asymmetric attractors in hyperbolic-type memristive Hopfield neural network and its application in image encryption
13
作者 李晓霞 何倩倩 +2 位作者 余天意 才壮 徐桂芝 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期302-315,共14页
The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyper... The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab. 展开更多
关键词 hyperbolic-type memristor Hopfield neural network(HNN) asymmetric attractors image encryption
下载PDF
Combo Packet:An Encryption Traffic Classification Method Based on Contextual Information
14
作者 Yuancong Chai Yuefei Zhu +1 位作者 Wei Lin Ding Li 《Computers, Materials & Continua》 SCIE EI 2024年第4期1223-1243,共21页
With the increasing proportion of encrypted traffic in cyberspace, the classification of encrypted traffic has becomea core key technology in network supervision. In recent years, many different solutions have emerged... With the increasing proportion of encrypted traffic in cyberspace, the classification of encrypted traffic has becomea core key technology in network supervision. In recent years, many different solutions have emerged in this field.Most methods identify and classify traffic by extracting spatiotemporal characteristics of data flows or byte-levelfeatures of packets. However, due to changes in data transmission mediums, such as fiber optics and satellites,temporal features can exhibit significant variations due to changes in communication links and transmissionquality. Additionally, partial spatial features can change due to reasons like data reordering and retransmission.Faced with these challenges, identifying encrypted traffic solely based on packet byte-level features is significantlydifficult. To address this, we propose a universal packet-level encrypted traffic identification method, ComboPacket. This method utilizes convolutional neural networks to extract deep features of the current packet andits contextual information and employs spatial and channel attention mechanisms to select and locate effectivefeatures. Experimental data shows that Combo Packet can effectively distinguish between encrypted traffic servicecategories (e.g., File Transfer Protocol, FTP, and Peer-to-Peer, P2P) and encrypted traffic application categories (e.g.,BitTorrent and Skype). Validated on the ISCX VPN-non VPN dataset, it achieves classification accuracies of 97.0%and 97.1% for service and application categories, respectively. It also provides shorter training times and higherrecognition speeds. The performance and recognition capabilities of Combo Packet are significantly superior tothe existing classification methods mentioned. 展开更多
关键词 encrypted traffic classification packet-level convolutional neural network attention mechanisms
下载PDF
FL-EASGD:Federated Learning Privacy Security Method Based on Homomorphic Encryption
15
作者 Hao Sun Xiubo Chen Kaiguo Yuan 《Computers, Materials & Continua》 SCIE EI 2024年第5期2361-2373,共13页
Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data.However,there is still a potential risk of privacy leakage,for example,attackers can obta... Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data.However,there is still a potential risk of privacy leakage,for example,attackers can obtain the original data through model inference attacks.Therefore,safeguarding the privacy of model parameters becomes crucial.One proposed solution involves incorporating homomorphic encryption algorithms into the federated learning process.However,the existing federated learning privacy protection scheme based on homomorphic encryption will greatly reduce the efficiency and robustness when there are performance differences between parties or abnormal nodes.To solve the above problems,this paper proposes a privacy protection scheme named Federated Learning-Elastic Averaging Stochastic Gradient Descent(FL-EASGD)based on a fully homomorphic encryption algorithm.First,this paper introduces the homomorphic encryption algorithm into the FL-EASGD scheme to preventmodel plaintext leakage and realize privacy security in the process ofmodel aggregation.Second,this paper designs a robust model aggregation algorithm by adding time variables and constraint coefficients,which ensures the accuracy of model prediction while solving performance differences such as computation speed and node anomalies such as downtime of each participant.In addition,the scheme in this paper preserves the independent exploration of the local model by the nodes of each party,making the model more applicable to the local data distribution.Finally,experimental analysis shows that when there are abnormalities in the participants,the efficiency and accuracy of the whole protocol are not significantly affected. 展开更多
关键词 Federated learning homomorphic encryption privacy security stochastic gradient descent
下载PDF
Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
16
作者 王一铭 黄树锋 +2 位作者 陈煌 杨健 蔡述庭 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期287-302,共16页
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete... A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality. 展开更多
关键词 visual security image encryption parallel compressive sensing edge detection embedding
下载PDF
Physical Layer Encryption of OFDM-PON Based on Quantum Noise Stream Cipher with Polar Code
17
作者 Xu Yinbo Gao Mingyi +3 位作者 Zhu Huaqing Chen Bowen Xiang Lian Shen Gangxiang 《China Communications》 SCIE CSCD 2024年第3期174-188,共15页
Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast e... Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security. 展开更多
关键词 physical layer encryption polar code quantum noise stream cipher
下载PDF
Blockchain-Based Certificateless Bidirectional Authenticated Searchable Encryption Scheme in Cloud Email System
18
作者 Yanzhong Sun Xiaoni Du +1 位作者 Shufen Niu Xiaodong Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3287-3310,共24页
Traditional email systems can only achieve one-way communication,which means only the receiver is allowed to search for emails on the email server.In this paper,we propose a blockchain-based certificateless bidirectio... Traditional email systems can only achieve one-way communication,which means only the receiver is allowed to search for emails on the email server.In this paper,we propose a blockchain-based certificateless bidirectional authenticated searchable encryption model for a cloud email system named certificateless authenticated bidirectional searchable encryption(CL-BSE)by combining the storage function of cloud server with the communication function of email server.In the new model,not only can the data receiver search for the relevant content by generating its own trapdoor,but the data owner also can retrieve the content in the same way.Meanwhile,there are dual authentication functions in our model.First,during encryption,the data owner uses the private key to authenticate their identity,ensuring that only legal owner can generate the keyword ciphertext.Second,the blockchain verifies the data owner’s identity by the received ciphertext,allowing only authorized members to store their data in the server and avoiding unnecessary storage space consumption.We obtain a formal definition of CL-BSE and formulate a specific scheme from the new system model.Then the security of the scheme is analyzed based on the formalized security model.The results demonstrate that the scheme achieves multikeyword ciphertext indistinguishability andmulti-keyword trapdoor privacy against any adversary simultaneously.In addition,performance evaluation shows that the new scheme has higher computational and communication efficiency by comparing it with some existing ones. 展开更多
关键词 Cloud email system authenticated searchable encryption blockchain-based designated server test multi-trapdoor privacy multi-ciphertext indistinguishability
下载PDF
A Blind Batch Encryption and Public Ledger-Based Protocol for Sharing Sensitive Data
19
作者 Zhiwei Wang Nianhua Yang +2 位作者 Qingqing Chen Wei Shen Zhiying Zhang 《China Communications》 SCIE CSCD 2024年第1期310-322,共13页
For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and all... For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and allows privacy information to be preserved.Data owners can tightly manage their data with efficient revocation and only grant one-time adaptive access for the fulfillment of the requester.We prove that our protocol is semanticallly secure,blind,and secure against oblivious requesters and malicious file keepers.We also provide security analysis in the context of four typical attacks. 展开更多
关键词 blind batch encryption data sharing onetime adaptive access public ledger security and privacy
下载PDF
Enhancing IoT Data Security with Lightweight Blockchain and Okamoto Uchiyama Homomorphic Encryption
20
作者 Mohanad A.Mohammed Hala B.Abdul Wahab 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1731-1748,共18页
Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revol... Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revolutionized the Fourth Industrial Revolution by enabling interconnected devices to offer innovative services,ultimately enhancing human lives.This paper presents a new approach utilizing lightweight blockchain technology,effectively reducing the computational burden typically associated with conventional blockchain systems.By integrating this lightweight blockchain with IoT systems,substantial reductions in implementation time and computational complexity can be achieved.Moreover,the paper proposes the utilization of the Okamoto Uchiyama encryption algorithm,renowned for its homomorphic characteristics,to reinforce the privacy and security of IoT-generated data.The integration of homomorphic encryption and blockchain technology establishes a secure and decentralized platformfor storing and analyzing sensitive data of the supply chain data.This platformfacilitates the development of some business models and empowers decentralized applications to perform computations on encrypted data while maintaining data privacy.The results validate the robust security of the proposed system,comparable to standard blockchain implementations,leveraging the distinctive homomorphic attributes of the Okamoto Uchiyama algorithm and the lightweight blockchain paradigm. 展开更多
关键词 Blockchain IOT integration of IoT and blockchain consensus algorithm Okamoto Uchiyama homomorphic encryption lightweight blockchain
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部