Artificial intelligence techniques have been used to predict basic oxygen furnace(BOF) end-points. However,the main challenge is to effectively reduce the input nodes as too many input nodes in neural network increase...Artificial intelligence techniques have been used to predict basic oxygen furnace(BOF) end-points. However,the main challenge is to effectively reduce the input nodes as too many input nodes in neural network increase complexity,decrease accuracy and slow down the training speed of the network.Simply picking-up variables as input usually influence validity of model.It is quite necessary to develop an effective method to reduce the number of input nodes whereby to simplify the network and improve model performance.In this study,a variable-filtrating technique combining both metallurgical mechanism model and partial least-squares(PLS ) regression method has been proposed by taking the advantages of both of them,i.e.qualitive and quantative relationships between variables respectively.Accordingly,a fuzzy-reasoning neural network(FNN) prediction model for basic oxygen furnace(BOF) end-point carbon content based on this technique has been developed.The prediction results showed that this model can effectively improve the hit rate of end-point carbon content and increase network training speed.The successful hit rate of the model can reach up to 94.12%with about 0.02% error range.展开更多
The present study aims to analyze the shift in shoreline due to coastal processes and formulate available for best estimate of future shoreline positions based on precedent shorelines. Information on rates and trends ...The present study aims to analyze the shift in shoreline due to coastal processes and formulate available for best estimate of future shoreline positions based on precedent shorelines. Information on rates and trends of shoreline change can be used to improve the understanding of the underlying causes and potential effects of coastal erosion which can support informed coastal management decisions. In this paper, researchers go over the changes in the recent positions of the shoreline of the Balasore coast for the 38 years from 1975 through 2013. The study area includes the Balasore coastal region from Rasalpur to Udaypur together with Chandipur, Choumukh, Chandrabali as well as Bichitrapur. Transects wise shoreline data base were developed for approximately 67 kilometers of shoreline and erosional/accretional scenario has also been analysed by delineating the shoreline from Landsat imageries of 1975, 1980, 1990, 1995, 2000, 2005, 2010 and 2013. A simple Linear Regression Model and End Point Rate (EPR) have been adopted to take out the rate of change of shoreline and its future positions, based on empirical observations at 67 transects along the Balasore coast. It is found that the north eastern part of Balasore coast in the vicinity of Subarnarekha estuary and Chandrabali beach undergo high rates of shore line shift. The shoreline data were integrated for long- (about 17 years) and short-term (about 7 years) shift rates analysis to comprehend the shoreline change and prediction. For the prediction of future shoreline, the model has been validated with the present shoreline position (2013). The rate of shoreline movement calculated from the fixed base line to shoreline position of 1975, 1980, 1990, 1995, 2000, 2005 and 2010 and based on this, the estimated shoreline of 2013 was calculated. The estimated shoreline was compared with the actual shoreline delineated from satellite imagery of 2013. The model error or positional shift at each sample point is observed. The positional error varies from??4.82 m to 212.41 m. It has been found that model prediction error is higher in the left hand side of river Subarnarekha. The overall error for the entire predicted shoreline was found to be 41.88 m by Root Mean Square Error (RMSE). In addition, it was tested by means difference between actual and predicted shoreline positions using “t” test and it has been found that predicted shore line is not significantly different from actual shoreline position at (t132 = 0.278) p < 0.01.展开更多
文摘Artificial intelligence techniques have been used to predict basic oxygen furnace(BOF) end-points. However,the main challenge is to effectively reduce the input nodes as too many input nodes in neural network increase complexity,decrease accuracy and slow down the training speed of the network.Simply picking-up variables as input usually influence validity of model.It is quite necessary to develop an effective method to reduce the number of input nodes whereby to simplify the network and improve model performance.In this study,a variable-filtrating technique combining both metallurgical mechanism model and partial least-squares(PLS ) regression method has been proposed by taking the advantages of both of them,i.e.qualitive and quantative relationships between variables respectively.Accordingly,a fuzzy-reasoning neural network(FNN) prediction model for basic oxygen furnace(BOF) end-point carbon content based on this technique has been developed.The prediction results showed that this model can effectively improve the hit rate of end-point carbon content and increase network training speed.The successful hit rate of the model can reach up to 94.12%with about 0.02% error range.
文摘The present study aims to analyze the shift in shoreline due to coastal processes and formulate available for best estimate of future shoreline positions based on precedent shorelines. Information on rates and trends of shoreline change can be used to improve the understanding of the underlying causes and potential effects of coastal erosion which can support informed coastal management decisions. In this paper, researchers go over the changes in the recent positions of the shoreline of the Balasore coast for the 38 years from 1975 through 2013. The study area includes the Balasore coastal region from Rasalpur to Udaypur together with Chandipur, Choumukh, Chandrabali as well as Bichitrapur. Transects wise shoreline data base were developed for approximately 67 kilometers of shoreline and erosional/accretional scenario has also been analysed by delineating the shoreline from Landsat imageries of 1975, 1980, 1990, 1995, 2000, 2005, 2010 and 2013. A simple Linear Regression Model and End Point Rate (EPR) have been adopted to take out the rate of change of shoreline and its future positions, based on empirical observations at 67 transects along the Balasore coast. It is found that the north eastern part of Balasore coast in the vicinity of Subarnarekha estuary and Chandrabali beach undergo high rates of shore line shift. The shoreline data were integrated for long- (about 17 years) and short-term (about 7 years) shift rates analysis to comprehend the shoreline change and prediction. For the prediction of future shoreline, the model has been validated with the present shoreline position (2013). The rate of shoreline movement calculated from the fixed base line to shoreline position of 1975, 1980, 1990, 1995, 2000, 2005 and 2010 and based on this, the estimated shoreline of 2013 was calculated. The estimated shoreline was compared with the actual shoreline delineated from satellite imagery of 2013. The model error or positional shift at each sample point is observed. The positional error varies from??4.82 m to 212.41 m. It has been found that model prediction error is higher in the left hand side of river Subarnarekha. The overall error for the entire predicted shoreline was found to be 41.88 m by Root Mean Square Error (RMSE). In addition, it was tested by means difference between actual and predicted shoreline positions using “t” test and it has been found that predicted shore line is not significantly different from actual shoreline position at (t132 = 0.278) p < 0.01.