We report a high power high beam quality quasi-continuous-wave(QCW)diode-end-pumped Nd:YAG slab amplifier at 1319 nm.The strongest 1064 nm parasitic oscillation has been successfully suppressed by reasonable coating d...We report a high power high beam quality quasi-continuous-wave(QCW)diode-end-pumped Nd:YAG slab amplifier at 1319 nm.The strongest 1064 nm parasitic oscillation has been successfully suppressed by reasonable coating design.In a five-pass configuration,the amplifier yields a 42.3 W linearly polarized 1319 nm output at repetition rate of 1 kHz with pulse duration of 75μs and beam quality factors of M^(2)_(x)=1.13 and M^(2)_(y)=2.16 in the orthogonal directions.The fluctuation of the amplifier output power is measured to be±0.6%.Furthermore,a computational model of QCW pulse amplification is employed to examine the amplification process.展开更多
We first experimentally demonstrate a laser-diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG green laser with a KTP crystal as the intra-cavity frequency doubler. The device produces an average output power...We first experimentally demonstrate a laser-diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG green laser with a KTP crystal as the intra-cavity frequency doubler. The device produces an average output power of 680 mW at 532 nm. The corresponding pulse width of the Q-switched envelope of the green laser is 170 + 20 ns. The mode-locked pulses have a repetition rate of approximately 183 MHz and the average pulse duration is estimated to be around sub-nanosecond. It is found that the intra-cavity frequency doubling greatly improves the modulation depth and stability of the mode-locked pulses within the Q-switched envelope.展开更多
A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-seg...A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-segmented(Nd:YAG + Nd:YVO4) and conventional composite(Nd:YAG + Nd:YAG) crystals to demonstrate the feasibility of spectral line matching for output power scale-up in end-pumped lasers. A maximum continuous-wave output power of 79.2 W is reported at 1064 nm, with Mx2= 4.82, My2= 5.48, and a pumping power of 136 W in the multi-segmented crystals(Nd:YAG + Nd:YVO4). Compared to conventional composite crystals(Nd:YAG + Nd:YAG), the optical-optical conversion efficiency of multi-segmented crystals(Nd:YAG + Nd:YVO4) from 808 nm to 1064 nm is enhanced from 30% to 58.8%,while the laser output sensitivity as affected by the diode-laser temperature is reduced from 55% to 9%.展开更多
The 1319 nm lasers have important research value and application prospects in optical communications, biomedicine and nonlinear frequency conversion. Currently, there are few reports of high power 1319 nm continuous l...The 1319 nm lasers have important research value and application prospects in optical communications, biomedicine and nonlinear frequency conversion. Currently, there are few reports of high power 1319 nm continuous lasers with high beam quality. We have demonstrated a high output power, high beam quality 1319 nm continuous-wave laser by laser diode end-pumped Nd:YAG slab with a stable-unstable hybrid resonator. With a pumping power of 477 W, an output of 96.8 W was obtained with a slope efficiency of 26.5% and stability of 0.27%. A single wavelength laser operation at 1318.7 nm was demonstrated. At an output of 91.1 W, the beam quality factors M<sup>2</sup> in stable and unstable directions were 2.95 and 1.88, respectively.展开更多
基金Supported by the National Basic Research Program of China under Grant No 2010CB630706the National High-Technology Research and Development Program under Grant No 2011AA030202the National Natural Science Foundation of China under Grant No 50990304.
文摘We report a high power high beam quality quasi-continuous-wave(QCW)diode-end-pumped Nd:YAG slab amplifier at 1319 nm.The strongest 1064 nm parasitic oscillation has been successfully suppressed by reasonable coating design.In a five-pass configuration,the amplifier yields a 42.3 W linearly polarized 1319 nm output at repetition rate of 1 kHz with pulse duration of 75μs and beam quality factors of M^(2)_(x)=1.13 and M^(2)_(y)=2.16 in the orthogonal directions.The fluctuation of the amplifier output power is measured to be±0.6%.Furthermore,a computational model of QCW pulse amplification is employed to examine the amplification process.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60278024 and 60438020).
文摘We first experimentally demonstrate a laser-diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG green laser with a KTP crystal as the intra-cavity frequency doubler. The device produces an average output power of 680 mW at 532 nm. The corresponding pulse width of the Q-switched envelope of the green laser is 170 + 20 ns. The mode-locked pulses have a repetition rate of approximately 183 MHz and the average pulse duration is estimated to be around sub-nanosecond. It is found that the intra-cavity frequency doubling greatly improves the modulation depth and stability of the mode-locked pulses within the Q-switched envelope.
基金Project supported by the National Defense Pre-Research Foundation of China(Grant No.9140A020105)
文摘A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-segmented(Nd:YAG + Nd:YVO4) and conventional composite(Nd:YAG + Nd:YAG) crystals to demonstrate the feasibility of spectral line matching for output power scale-up in end-pumped lasers. A maximum continuous-wave output power of 79.2 W is reported at 1064 nm, with Mx2= 4.82, My2= 5.48, and a pumping power of 136 W in the multi-segmented crystals(Nd:YAG + Nd:YVO4). Compared to conventional composite crystals(Nd:YAG + Nd:YAG), the optical-optical conversion efficiency of multi-segmented crystals(Nd:YAG + Nd:YVO4) from 808 nm to 1064 nm is enhanced from 30% to 58.8%,while the laser output sensitivity as affected by the diode-laser temperature is reduced from 55% to 9%.
文摘The 1319 nm lasers have important research value and application prospects in optical communications, biomedicine and nonlinear frequency conversion. Currently, there are few reports of high power 1319 nm continuous lasers with high beam quality. We have demonstrated a high output power, high beam quality 1319 nm continuous-wave laser by laser diode end-pumped Nd:YAG slab with a stable-unstable hybrid resonator. With a pumping power of 477 W, an output of 96.8 W was obtained with a slope efficiency of 26.5% and stability of 0.27%. A single wavelength laser operation at 1318.7 nm was demonstrated. At an output of 91.1 W, the beam quality factors M<sup>2</sup> in stable and unstable directions were 2.95 and 1.88, respectively.