期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Abundance quantification by independent component analysis of hyperspectral imagery for oil spill coverage calculation 被引量:2
1
作者 韩仲志 万剑华 +1 位作者 张杰 张汉德 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第4期978-986,共9页
The estimation of oil spill coverage is an important part of monitoring of oil spills at sea.The spatial resolution of images collected by airborne hyper-spectral remote sensing limits both the detection of oil spills... The estimation of oil spill coverage is an important part of monitoring of oil spills at sea.The spatial resolution of images collected by airborne hyper-spectral remote sensing limits both the detection of oil spills and the accuracy of estimates of their size.We consider at-sea oil spills with zonal distribution in this paper and improve the traditional independent component analysis algorithm.For each independent component we added two constraint conditions:non-negativity and constant sum.We use priority weighting by higher-order statistics,and then the spectral angle match method to overcome the order nondeterminacy.By these steps,endmembers can be extracted and abundance quantified simultaneously.To examine the coverage of a real oil spill and correct our estimate,a simulation experiment and a real experiment were designed using the algorithm described above.The result indicated that,for the simulation data,the abundance estimation error is 2.52% and minimum root mean square error of the reconstructed image is 0.030 6.We estimated the oil spill rate and area based on eight hyper-spectral remote sensing images collected by an airborne survey of Shandong Changdao in 2011.The total oil spill area was 0.224 km^2,and the oil spill rate was 22.89%.The method we demonstrate in this paper can be used for the automatic monitoring of oil spill coverage rates.It also allows the accurate estimation of the oil spill area. 展开更多
关键词 oil spill hyperspectral imagery endmember extraction abundance quantification independent component analysis (ICA)
下载PDF
Speed-up for N-FINDR algorithm 被引量:1
2
作者 王立国 张晔 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第1期141-144,共4页
N-FINDR is a very popular algorithm of endmember (EM) extraction for its automated property and high efficiency. Unfortunately, innumerable volume calculation, initial random selection of EMs and blind searching for E... N-FINDR is a very popular algorithm of endmember (EM) extraction for its automated property and high efficiency. Unfortunately, innumerable volume calculation, initial random selection of EMs and blind searching for EMs lead to low speed of the algorithm and limit the applications of the algorithm. So in this paper two measures are proposed to speed up the algorithm. One of the measures is substituting distance calculation for volume calculation. Thus the avoidance of volume calculation greatly decreases the computational cost. The other measure is resorting dataset in terms of pixel purity likelihood based on pixel purity index (PPI) concept. Then, initial EMs can be selected well-founded and a fast searching for EMs is achieved. Numerical experiments show that the two measures speed up the original algorithm hundreds of times as the number of EMs is more than ten. 展开更多
关键词 endmember extraction N-FINDR algorithm PPI algorithm spectral unmixing
下载PDF
Fast implementation of kernel simplex volume analysis based on modified Cholesky factorization for endmember extraction 被引量:1
3
作者 Jing LI Xiao-run LI +1 位作者 Li-jiao WANG Liao-ying ZHAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第3期250-257,共8页
Endmember extraction is a key step in the hyperspectral image analysis process. The kernel new simplex growing algorithm (KNSGA), recently developed as a nonlinear alternative to the simplex growing algorithm (SGA... Endmember extraction is a key step in the hyperspectral image analysis process. The kernel new simplex growing algorithm (KNSGA), recently developed as a nonlinear alternative to the simplex growing algorithm (SGA), has proven a promising endmember extraction technique. However, KNSGA still suffers from two issues limiting its application. First, its random initialization leads to inconsistency in final results; second, excessive computation is caused by the iterations of a simplex volume calculation. To solve the first issue, the spatial pixel purity index (SPPI) method is used in this study to extract the first endrnember, eliminating the initialization dependence. A novel approach tackles the second issue by initially using a modified Cholesky fac- torization to decompose the volume matrix into triangular matrices, in order to avoid directly computing the determinant tauto- logically in the simplex volume formula. Theoretical analysis and experiments on both simulated and real spectral data demonstrate that the proposed algorithm significantly reduces computational complexity, and runs faster than the original algorithm. 展开更多
关键词 Endmember extraction Modified Cholesky factorization Spatial pixel purity index (SPPI) New simplex growingalgorithm (NSGA) Kernel new simplex growing algorithm (KNSGA)
原文传递
A hyperspectral image endmember extraction algorithm based on generalized morphology
4
作者 王东辉 杨秀坤 赵岩 《Optoelectronics Letters》 EI 2014年第5期387-390,共4页
Generalized morphological operator can generate less statistical bias in the output than classical morphological operator. Comprehensive utilization of spectral and spatial information of pixels, an endmember extracti... Generalized morphological operator can generate less statistical bias in the output than classical morphological operator. Comprehensive utilization of spectral and spatial information of pixels, an endmember extraction algorithm based on generalized morphology is proposed. For the limitations of morphological operator in the pixel arrangement rule and replacement criteria, the reference pixel is introduced. In order to avoid the cross substitution phenomenon at the boundary of different object categories in the image, an endmember is extracted by calculating the generalized opening-closing(GOC) operator which uses the modified energy function as a distance measure. The algorithm is verified by using simulated data and real data. Experimental results show that the proposed algorithm can extract endmember automatically without prior knowledge and achieve relatively high extraction accuracy. 展开更多
关键词 extraction Morphology PIXELS Spectroscopy Comprehensive utilizations Endmember extraction algorithms extraction accuracy Generalized morphological operators Hyper spectral images Morphological operator Object categories Spatial informations
原文传递
Recent advances in hyperspectral image processing 被引量:4
5
作者 ZHANG Liangpei DU Bo 《Geo-Spatial Information Science》 SCIE EI 2012年第3期143-156,共14页
Hyperspectral images(HSI)provide a new way to exploit the internal physical composition of the land scene.The basic platform for acquiring HSI data-sets are airborne or spaceborne spectral imaging.Retrieving useful in... Hyperspectral images(HSI)provide a new way to exploit the internal physical composition of the land scene.The basic platform for acquiring HSI data-sets are airborne or spaceborne spectral imaging.Retrieving useful information from hyperspectral images can be grouped into four categories.(1)Classification:Hyperspectral images provide so much spectral and spatial information that remotely sensed image classification has become a complex task.(2)Endmember extraction and spectral unmixing:Among images,only HSI have a complete model to represent the internal structure of each pixel where the endmembers are the elements.Identification of endmembers from HSI thus becomes the foremost step in interpretation of each pixel.With proper endmembers,the corresponding abundances can also be exactly calculated.(3)Target detection:Another practical problem is how to determine the existence of certain resolved or full pixel objects from a complex background.Constructing a reliable rule for separating target signals from all the other background signals,even in the case of low target occurrence and high spectral variation,comprises the key to this problem.(4)Change detection:Although change detection is not a new problem,detecting changes from hyperspectral images has brought new challenges,since the spectral bands are so many,accurate band-to-band correspondences and minor changes in subclass land objects can be depicted in HSI.In this paper,the basic theory and the most canonical works are discussed,along with the most recent advances in each aspect of hyperspectral image processing. 展开更多
关键词 hyperspectral images CLASSIFICATION spectral unmixing endmembers extraction target detection hyperspectral change detection
原文传递
A new approach based on orthogonal bases of data space to decomposition of mixed pixels for hyperspectral imagery
6
作者 TAO XueTao WANG Bin ZHANG LiMing 《Science in China(Series F)》 2009年第5期843-857,共15页
A new algorithm for decomposition of mixed pixels based on orthogonal bases of data space is proposed in this paper. It is a simplex-based method which extracts endmembers sequentially using computations of largest si... A new algorithm for decomposition of mixed pixels based on orthogonal bases of data space is proposed in this paper. It is a simplex-based method which extracts endmembers sequentially using computations of largest simplex volumes. At each searching step of this extraction algorithm, searching for the simplex with the largest volume is equivalent to searching for a new orthogonal basis which has the largest norm. The new endmember corresponds to the new basis with the largest norm. This algorithm runs very fast and can also avoid the dilemma in traditional simplex-based endmember extraction algorithms, such as N-FINDR, that it generally produces different sets of final endmembers if different initial conditions are used. Moreover, with this set of orthogonal bases, the proposed algorithm can also determine the proper number of endmembers and finish the unmixing of the original images which the traditional simplex-based algorithms cannot do by themselves. Experimental results of both artificial simulated images and practical remote sensing images demonstrate the algorithm proposed in this paper is a fast and accurate algorithm for the decomposition of mixed pixels. 展开更多
关键词 decomposition of mixed pixels simplex-based method endmember extraction N-FINDR SGA orthogonal bases hyperspectral data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部