In order to improve the extracellular endo-1,4-β-mannosidase(MAN) activity of recombinant Pichia pastoris, optimization of signal peptides was investigated. At first, five potential signal peptides(W1, MF4 I, INU1 A,...In order to improve the extracellular endo-1,4-β-mannosidase(MAN) activity of recombinant Pichia pastoris, optimization of signal peptides was investigated. At first, five potential signal peptides(W1, MF4 I, INU1 A, αpre, HFBI) were chosen to be analyzed by Signal P 4.0, among which W1 was designed. Then, the widely used signal peptide α-factor in expression vector p GAPZαA was replaced by those five signal peptides to reconstruct five new expression vectors. MAN activity was assayed after expression vectors were transformed into Pichia pastoris. The data show that the relative efficiencies of W1, MF4 I, INU1 A, αpre, and HFBI signal peptides are 23.5%, 203.5%, 0, 79.7%, and 120.3% compared with α-factor, respectively. The further gene copy number determination by the quantitative real-time PCR reveals that the MAN activities mediated by α-factor from 1 to 6 gene copy number levels are 12.95, 43.33, 126.63, 173.53, 103.23 and 88.63 U/m L, while those mediated by MF4 I are 79.22, 133.89, 260.14, 347.5, 206.15 and 181.89 U/m L, respectively. The maximum MAN activity reached 347.5 U/m L with 4 gene copies mediated by MF4 I. These results indicate that replacing the signal peptide α-factor with MF4 I and increasing MAN gene copies to a proper number can greatly improve the secretory expression of MAN.展开更多
Gene encoding endo-β-1,4-glucanase(TM1525)is derived from Thermotoga maritima(T.maritima),which has an open reading frame of 825 bp and encodes a 274 amino acid endo-β-1,4-glucanase.This enzyme has the same high tem...Gene encoding endo-β-1,4-glucanase(TM1525)is derived from Thermotoga maritima(T.maritima),which has an open reading frame of 825 bp and encodes a 274 amino acid endo-β-1,4-glucanase.This enzyme has the same high temperature resistance as thermophilic bacteria,which is an ideal property for industrial applications.By molecular biological means,TM1525 was cloned into pHT43 vector and introduced into Bacillus subtilis(B.subtilis)WB800N by electroporation.The results showed that the WB800N expression system was successfully constructed,and extracellular expression of the recombinant gene was achieved.Cellulose hydrolyzed activity of the protein was exhibited.展开更多
基金Project(13JJ9002)supported by Hunan Provincial Natural Science Foundation of ChinaProject(2012XK4081)supported by the Key Science Technology Plan Project of Hunan Provincial Science&Technology Department,ChinaProject(CX2012B124)supported by the Graduate Degree Thesis Innovation Program of Hunan Province,China
文摘In order to improve the extracellular endo-1,4-β-mannosidase(MAN) activity of recombinant Pichia pastoris, optimization of signal peptides was investigated. At first, five potential signal peptides(W1, MF4 I, INU1 A, αpre, HFBI) were chosen to be analyzed by Signal P 4.0, among which W1 was designed. Then, the widely used signal peptide α-factor in expression vector p GAPZαA was replaced by those five signal peptides to reconstruct five new expression vectors. MAN activity was assayed after expression vectors were transformed into Pichia pastoris. The data show that the relative efficiencies of W1, MF4 I, INU1 A, αpre, and HFBI signal peptides are 23.5%, 203.5%, 0, 79.7%, and 120.3% compared with α-factor, respectively. The further gene copy number determination by the quantitative real-time PCR reveals that the MAN activities mediated by α-factor from 1 to 6 gene copy number levels are 12.95, 43.33, 126.63, 173.53, 103.23 and 88.63 U/m L, while those mediated by MF4 I are 79.22, 133.89, 260.14, 347.5, 206.15 and 181.89 U/m L, respectively. The maximum MAN activity reached 347.5 U/m L with 4 gene copies mediated by MF4 I. These results indicate that replacing the signal peptide α-factor with MF4 I and increasing MAN gene copies to a proper number can greatly improve the secretory expression of MAN.
基金National Natural Science Foundation of China(Regional Fund)(No.51863020)
文摘Gene encoding endo-β-1,4-glucanase(TM1525)is derived from Thermotoga maritima(T.maritima),which has an open reading frame of 825 bp and encodes a 274 amino acid endo-β-1,4-glucanase.This enzyme has the same high temperature resistance as thermophilic bacteria,which is an ideal property for industrial applications.By molecular biological means,TM1525 was cloned into pHT43 vector and introduced into Bacillus subtilis(B.subtilis)WB800N by electroporation.The results showed that the WB800N expression system was successfully constructed,and extracellular expression of the recombinant gene was achieved.Cellulose hydrolyzed activity of the protein was exhibited.