Objective This study aimed to evaluate the hepatotoxicity, metabolic disturbance activity and endocrine disrupting activity of mice treated by Decabromodiphenyl ethane (DBDPE). Methods In this study, Balb/C mice wer...Objective This study aimed to evaluate the hepatotoxicity, metabolic disturbance activity and endocrine disrupting activity of mice treated by Decabromodiphenyl ethane (DBDPE). Methods In this study, Balb/C mice were treated orally by gavage with various doses of DBDPE. After 30 days of treatment, mice were sacrificed; blood, livers and thyroid glands were obtained, and hepatic microsomes were isolated. Biochemical parameters including 8 clinical chemistry parameters, blood glucose and hormone levels including insulin and thyroid hormone were assayed. The effects of DBDPE on hepatic cytochrome P450 (CYP) levels and activities and uridinediphosphate-glucuronosyltransferase (UDPGT) activities were investigated. Liver and thyroid glands were observed. Results There were no obvious signs of toxicity and no significant treatment effect on body weight, or liver-to-body weight ratios between treatment groups. The levels of ALT and AST of higher dose treatment groups were markedly increased. Blood glucose levels of treatment groups were higher than those of control group. There was also an induction in TSH, T3, and f T3. UDPGT, PROD, and EROD activities were found to have been increased significantly in the high dose group. Histopathologic liver changes were characterized by hepatocyte hypertrophy and cytoplasmic vacuolization. Our findings suggest that DBDPE can cause a certain degree of mouse liver damage and insufficiency. Conclusion DBDPE has the activity of endocrine disruptors in Bal/C mice, which may induce drug-metabolizing enzymes including CYPs and UDPGT, and interfere with thyroid hormone levels mediated by Ah R and CAR signaling pathways. Endocrine disrupting activity of DBDPE could also affect the glucose metabolism homeostasis.展开更多
In the present review, we first summarize the main benefits, limitations and pitfalls of conventional in vivo approaches to assessing male reproductive structures and functions in rodents in cases of endocrine active ...In the present review, we first summarize the main benefits, limitations and pitfalls of conventional in vivo approaches to assessing male reproductive structures and functions in rodents in cases of endocrine active substance (EAS) exposure from the postulate that they may provide data that can be extrapolated to humans. Then, we briefly present some integrated approaches in rodents we have recently developed at the organism level. We particularly focus on the possible effects and modes of action (MOA) of these substances at low doses and in mixtures, real-life conditions and at the organ level, deciphering the precise effects and MOA on the fetal testis. It can be considered that the in vivo experimental EAS exposure of rodents remains the first choice for studies and is a necessary tool (together with the epidemiological approach) for understanding the reproductive effects and MOA of EASs, provided the pitfalls and limitations of the rodent models are known and considered. We also provide some evidence that classical rodent models may be refined for studying the multiple consequences of EAS exposure, not only on the reproductive axis but also on various hormonally regulated organs and tissues, among which several are implicated in the complex process of mammalian reproduction. Such models constitute an interesting way of approaching human exposure conditions. Finally, we show that organotypic culture models are powerful complementary tools, especially when focusing on the MOA. All these approaches have contributed in a combinatorial manner to a better understanding of the impact of EAS exposure on human reproduction.展开更多
Toxicity of wastewater treatment plant (WWTP) effluents is usually assessed with standardized bioassays, as e.g. the Fish Embryo Toxicity test (FET), but assessment of sub-lethal toxic effects requires to develop more...Toxicity of wastewater treatment plant (WWTP) effluents is usually assessed with standardized bioassays, as e.g. the Fish Embryo Toxicity test (FET), but assessment of sub-lethal toxic effects requires to develop more adapted tests. The present work aimed to add the recording of several sub-lethal endpoints in exposed zebrafish embryo-larval stages in order to increase the sensitivity of residual toxicity evaluation of WWTP effluents using a semi-quantitative method (iFET score). This approach was complemented with the genotoxicity assessment on the exposed embryos, a sub-acute hazard particularly relevant to evaluate a potential chronic toxicity risk of low and multi-contaminated environmental matrices. Additionally, endocrine activities of effluents were quantified using human reporter cell lines. This test battery was applied to the assessment of the residual toxicity of five biological treatment effluents, further treated or not using various ozonation treatments intended to improve pharmaceutical compounds removal. Acute toxicity towards zebrafish embryos was very low. However, iFET score approach proposed was able to reveal residual toxicity through the presence of developmental abnormalities in all samples tested. Additionally, a low residual genotoxicity was measured in embryos exposed to two of the WWTP effluents when all excepted one exhibited a residual endocrine activity potential in the ng/L range providing complementary information on the occurrence of endocrine active chemicals and their reduction by different processes. To sum up, such a simplified and ecologically relevant test battery was found sensitive enough to characterize and differentiate various residual effluent’s ecotoxicity at contaminant levels of environmental concern.展开更多
Background:Portulaca oleracea L.,a traditional medicine with bioactive compounds like flavonoids and omega-3 fatty acids,has gained interest in its neuroendocrine and toxicological effects.Objectives:The aim of this r...Background:Portulaca oleracea L.,a traditional medicine with bioactive compounds like flavonoids and omega-3 fatty acids,has gained interest in its neuroendocrine and toxicological effects.Objectives:The aim of this review is to provide a comprehensive summary of the current knowledge on the neuroendocrine and toxicological activities of Portulaca oleracea.This review also highlights the potential mechanisms of action of these activities.Methods:A literature search was conducted using various databases such as PubMed,ScienceDirect,and Google Scholar.Keywords such as’Portulaca oleracea’,’purslane’,’neuroendocrine activity’,and’toxicological activity’were used to identify relevant articles.Only studies published in English were included in this review.Results:Portulaca oleracea has been found to improve testicular and cognitive function as well as memory in animal models of Alzheimer’s disease and cerebral ischemia due to its antioxidant,anti-inflammatory properties,anti-anxiety and anti-depressant effects.On the other hand,Portulaca oleracea has also been reported to possess toxicological activities.Studies have shown that high doses of Portulaca oleracea extract can cause liver and kidney damage in animal models.The toxic effects of Portulaca oleracea are thought to be due to the presence of oxalates and nitrates in the plant.However,these toxic effects have not been observed in human studies,where Portulaca oleracea was found to be safe for consumption.Conclusion:In conclusion,Portulaca oleracea,a medicinal plant with potential health benefits,has neuroendocrine effects like neuroprotective,anxiolytic,and anti-depressant properties.However,high doses should be used cautiously due to potential toxicological effects.展开更多
基金supported by the National Natural Science Foundation[No.21407179]
文摘Objective This study aimed to evaluate the hepatotoxicity, metabolic disturbance activity and endocrine disrupting activity of mice treated by Decabromodiphenyl ethane (DBDPE). Methods In this study, Balb/C mice were treated orally by gavage with various doses of DBDPE. After 30 days of treatment, mice were sacrificed; blood, livers and thyroid glands were obtained, and hepatic microsomes were isolated. Biochemical parameters including 8 clinical chemistry parameters, blood glucose and hormone levels including insulin and thyroid hormone were assayed. The effects of DBDPE on hepatic cytochrome P450 (CYP) levels and activities and uridinediphosphate-glucuronosyltransferase (UDPGT) activities were investigated. Liver and thyroid glands were observed. Results There were no obvious signs of toxicity and no significant treatment effect on body weight, or liver-to-body weight ratios between treatment groups. The levels of ALT and AST of higher dose treatment groups were markedly increased. Blood glucose levels of treatment groups were higher than those of control group. There was also an induction in TSH, T3, and f T3. UDPGT, PROD, and EROD activities were found to have been increased significantly in the high dose group. Histopathologic liver changes were characterized by hepatocyte hypertrophy and cytoplasmic vacuolization. Our findings suggest that DBDPE can cause a certain degree of mouse liver damage and insufficiency. Conclusion DBDPE has the activity of endocrine disruptors in Bal/C mice, which may induce drug-metabolizing enzymes including CYPs and UDPGT, and interfere with thyroid hormone levels mediated by Ah R and CAR signaling pathways. Endocrine disrupting activity of DBDPE could also affect the glucose metabolism homeostasis.
文摘In the present review, we first summarize the main benefits, limitations and pitfalls of conventional in vivo approaches to assessing male reproductive structures and functions in rodents in cases of endocrine active substance (EAS) exposure from the postulate that they may provide data that can be extrapolated to humans. Then, we briefly present some integrated approaches in rodents we have recently developed at the organism level. We particularly focus on the possible effects and modes of action (MOA) of these substances at low doses and in mixtures, real-life conditions and at the organ level, deciphering the precise effects and MOA on the fetal testis. It can be considered that the in vivo experimental EAS exposure of rodents remains the first choice for studies and is a necessary tool (together with the epidemiological approach) for understanding the reproductive effects and MOA of EASs, provided the pitfalls and limitations of the rodent models are known and considered. We also provide some evidence that classical rodent models may be refined for studying the multiple consequences of EAS exposure, not only on the reproductive axis but also on various hormonally regulated organs and tissues, among which several are implicated in the complex process of mammalian reproduction. Such models constitute an interesting way of approaching human exposure conditions. Finally, we show that organotypic culture models are powerful complementary tools, especially when focusing on the MOA. All these approaches have contributed in a combinatorial manner to a better understanding of the impact of EAS exposure on human reproduction.
基金financially supported by the French Ministry of Economy,Industry and Digital within the framework of the Project TRIUMPH(TReatIng Urban Micropollutants and Pharmaceuticals in wastewaters)labelled and managed by the European Eureka Cluster ACQUEAU.Laurent Simon(LEHNA,UMR 5023)is deeply acknowledge for the total and dissolved organic carbon analysis.
文摘Toxicity of wastewater treatment plant (WWTP) effluents is usually assessed with standardized bioassays, as e.g. the Fish Embryo Toxicity test (FET), but assessment of sub-lethal toxic effects requires to develop more adapted tests. The present work aimed to add the recording of several sub-lethal endpoints in exposed zebrafish embryo-larval stages in order to increase the sensitivity of residual toxicity evaluation of WWTP effluents using a semi-quantitative method (iFET score). This approach was complemented with the genotoxicity assessment on the exposed embryos, a sub-acute hazard particularly relevant to evaluate a potential chronic toxicity risk of low and multi-contaminated environmental matrices. Additionally, endocrine activities of effluents were quantified using human reporter cell lines. This test battery was applied to the assessment of the residual toxicity of five biological treatment effluents, further treated or not using various ozonation treatments intended to improve pharmaceutical compounds removal. Acute toxicity towards zebrafish embryos was very low. However, iFET score approach proposed was able to reveal residual toxicity through the presence of developmental abnormalities in all samples tested. Additionally, a low residual genotoxicity was measured in embryos exposed to two of the WWTP effluents when all excepted one exhibited a residual endocrine activity potential in the ng/L range providing complementary information on the occurrence of endocrine active chemicals and their reduction by different processes. To sum up, such a simplified and ecologically relevant test battery was found sensitive enough to characterize and differentiate various residual effluent’s ecotoxicity at contaminant levels of environmental concern.
文摘Background:Portulaca oleracea L.,a traditional medicine with bioactive compounds like flavonoids and omega-3 fatty acids,has gained interest in its neuroendocrine and toxicological effects.Objectives:The aim of this review is to provide a comprehensive summary of the current knowledge on the neuroendocrine and toxicological activities of Portulaca oleracea.This review also highlights the potential mechanisms of action of these activities.Methods:A literature search was conducted using various databases such as PubMed,ScienceDirect,and Google Scholar.Keywords such as’Portulaca oleracea’,’purslane’,’neuroendocrine activity’,and’toxicological activity’were used to identify relevant articles.Only studies published in English were included in this review.Results:Portulaca oleracea has been found to improve testicular and cognitive function as well as memory in animal models of Alzheimer’s disease and cerebral ischemia due to its antioxidant,anti-inflammatory properties,anti-anxiety and anti-depressant effects.On the other hand,Portulaca oleracea has also been reported to possess toxicological activities.Studies have shown that high doses of Portulaca oleracea extract can cause liver and kidney damage in animal models.The toxic effects of Portulaca oleracea are thought to be due to the presence of oxalates and nitrates in the plant.However,these toxic effects have not been observed in human studies,where Portulaca oleracea was found to be safe for consumption.Conclusion:In conclusion,Portulaca oleracea,a medicinal plant with potential health benefits,has neuroendocrine effects like neuroprotective,anxiolytic,and anti-depressant properties.However,high doses should be used cautiously due to potential toxicological effects.