期刊文献+
共找到133,193篇文章
< 1 2 250 >
每页显示 20 50 100
Endocrine-Disrupting Chemicals: Possible Genesis of Ovarian Tumors
1
作者 Kasonde Chanda Ziwei Wang +2 位作者 Shen Ning Xue Bin Yingxiao Yan 《Open Journal of Obstetrics and Gynecology》 2023年第6期1025-1037,共13页
Background: Prolonged exposure to environmental toxicants like endocrine-disrupting chemicals has been linked to several ovarian pathologies. Exposure to endocrine-disrupting chemicals may start at any time of life fr... Background: Prolonged exposure to environmental toxicants like endocrine-disrupting chemicals has been linked to several ovarian pathologies. Exposure to endocrine-disrupting chemicals may start at any time of life from the fetal stage to adulthood resulting in various health complications The purpose of our study is to compare the concentration levels and association of benzopyrene, bisphenol A and genistein in patients with ovarian tumors and normal control group. We also sort to evaluate the predictive performance of benzopyrene, bisphenol A and genistein in patients with ovarian tumors. Methods: A case-control study was conducted for randomly selected participants involving 30 patients and 30 controls. 30 patients with radiologically diagnosed and histopathological confirmed ovarian tumors were included in the study between January 2022 and December 2022. Urine samples from each group were analyzed using liquid chromatography-mass spectrometry. Descriptive analysis for normally distributed continuous variables was done accordingly. Concentration levels of endocrine-disrupting chemicals were assessed using the Mann-Whitney test. The association of endocrine-disrupting chemicals with pathological ovarian tumors was analyzed using binary logistic regression. Evaluation of the diagnostic performance of endocrine-disrupting chemicals was analyzed using the ROC curve. Results: Overall, patients were significantly (P = 0.000) older than the healthy controls. Mean years (SD) were 36.7 (7.90) and 28.8 years (4.89) for patients and normal women respectively. Endometriomas had the highest incidence of 50%. The level of benzopyrene and bisphenol A in patients was significantly higher than those in the control group, while the level of genistein was significantly higher in normal controls. Benzopyrene and bisphenol A were significantly associated with ovarian cysts, and the incidence of pathological ovarian cysts was positively correlated to these EDCs, with OR value 64.79 (P = 0.005) for benzopyrene and 9.609 (P = 0.001) for bisphenol A. Genistein was significantly negatively correlated with the incidence of pathological ovarian tumors, with OR value of 0.153 (P = 0.007). Diagnostic performance on the AUC for benzopyrene, bisphenol A and genistein&l. 展开更多
关键词 Environmental Toxicants endocrine-disrupting chemical Ovarian Cyst Ovarian Tumor
下载PDF
Apoptosis-inducing activity of endocrine-disrupting chemicals in cultured PC12 cells
2
作者 Harue Sasaya Kazuya Yasuzumi +5 位作者 Hiroki Maruoka Ayumi Fujita Yuichi Kato Taiki Waki Koji Shimoke Toshihiko Ikeuchi 《Advances in Biological Chemistry》 2012年第2期92-105,共14页
Endocrine-disrupting chemicals (EDCs) are known to exert estrogen-like effects that are similar to those made by naturally produced hormones or by inhibition of the receptors in the cell receiving the hormones. Recent... Endocrine-disrupting chemicals (EDCs) are known to exert estrogen-like effects that are similar to those made by naturally produced hormones or by inhibition of the receptors in the cell receiving the hormones. Recently, several reports have indicated that EDCs can affect the developing central nervous system. In our current study, we report that some EDCs induce apoptosis in cultured PC12 cells and can be classified into three groups. Bisphenol A (BPA), p-nonylphenol (NP) and tributyltin chloride (TBT) were found to induce endoplasmic reticulum (ER) stress-associated apoptosis and activate the unfolded protein response (UPR) system, whereas benomyl (beno) induced non-ER stress-associated apoptosis. The half-maximal apoptosis-inducing concentrations (IC50) of these EDCs were 160 μM for BPA, 25.6 μM for NP, 640 nM for TBT and 48 μM for beno. Although these concentrations are higher than those found in the environment, some EDCs may have apoptotic effects on various cells in the body, including neurons, through their accumulation in the body over time or condensation through the food chain. On the other hand, benzopyrene, fenvalerate, styrene monomer and bis(2-ethylhexyl)phthalate did not induce apoptosis in PC12 cells. We analyzed also whether apoptosis-inducing EDCs had an estrogen-like effect on cultured PC12 cells transfected with a luciferase reporter plasmid, the activity of which is dependent on estrogen receptor α. We found that BPA had an estrogen-like effect (EC50 = 5.9 μM) but that NP, TBT and beno did not in transfected PC12 cells. These results suggest that BPA may predomi-nantly exert estrogenic effects, but others may pre-dominantly have apoptosis-inducing effects on cells in the body exposed to a polluted environment. 展开更多
关键词 endocrine-disrupting chemicals ER Stress Apoptosis ESTROGEN RECEPTOR PC12 Cells
下载PDF
Valorization of Camellia oleifera oil processing byproducts to value-added chemicals and biobased materials: A critical review 被引量:1
3
作者 Xudong Liu Yiying Wu +11 位作者 Yang Gao Zhicheng Jiang Zicheng Zhao Wenquan Zeng Mingyu Xie Sisi Liu Rukuan Liu Yan Chao Suli Nie Aihua Zhang Changzhu Li Zhihong Xiao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期28-53,共26页
The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,bi... The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,birch,etc.),Camellia wastes contain diverse bioactive substances in addition to the abundant lignocellulosic components,and thus,the biorefinery utilization of C.oleifera processing byproducts involves complicated processing technologies.This reviewfirst summarizes various technologies for extracting and converting the main components in C.oleifera oil processing byproducts into value-added chemicals and biobased materials,as well as their potential applications.Microwave,ultrasound,and Soxhlet extractions are compared for the extraction of functional bioactive components(tannin,flavonoid,saponin,etc.),while solvothermal conversion and pyrolysis are discussed for the conversion of lignocellulosic components into value-added chemicals.The application areas of these chemicals according to their properties are introduced in detail,including utilizing antioxidant and anti-in-flammatory properties of the bioactive substances for the specific application,as well as drop-in chemicals for the substitution of unrenewable fossil fuel-derived products.In addition to chemical production,biochar fabricated from COS and its applications in thefields of adsorption,supercapacitor,soil remediation and wood composites are comprehensively reviewed and discussed.Finally,based on the compositions and structural characteristics of C.oleifera byproducts,the development of full-component valorization strategies and the expansion of the appli-cationfields are proposed. 展开更多
关键词 Camellia oleifera shell Camellia oleifera cake Value-added chemicals Bioactive components Biobased materials
下载PDF
CO_(2) conversion to solar fuels and chemicals:Opening the new paths
4
作者 Gabriele Centi Claudio Ampelli 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期680-683,共4页
This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems... This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective. 展开更多
关键词 Solar fuels Artificial leaf PEC devices PV-EC devices Cell engineering green H_(2) chemicals from theair
下载PDF
Machine Learning for Investigation on Endocrine-Disrupting Chemicals with Gestational Age and Delivery Time in a Longitudinal Cohort
5
作者 Hemi Luan Hongzhi Zhao +7 位作者 Jiufeng Li Yanqiu Zhou Jing Fang Hongxiu Liu Yuanyuan Li Wei Xia Shunqing Xu Zongwei Cai 《Research》 SCIE EI CAS CSCD 2021年第1期1519-1529,共11页
Endocrine-disrupting chemicals(EDCs)are widespread environmental chemicals that are often considered as risk factors with weak activity on the hormone-dependent process of pregnancy.However,the adverse effects of EDCs... Endocrine-disrupting chemicals(EDCs)are widespread environmental chemicals that are often considered as risk factors with weak activity on the hormone-dependent process of pregnancy.However,the adverse effects of EDCs in the body of pregnant women were underestimated.The interaction between dynamic concentration of EDCs and endogenous hormones(EHs)on gestational age and delivery time remains unclear.To define a temporal interaction between the EDCs and EHs during pregnancy,comprehensive,unbiased,and quantitative analyses of 33 EDCs and 14 EHs were performed for a longitudinal cohort with 2317 pregnant women.We developed a machine learning model with the dynamic concentration information of EDCs and EHs to predict gestational age with high accuracy in the longitudinal cohort of pregnant women.The optimal combination of EHs and EDCs can identify when labor occurs(time to delivery within two and four weeks,AUROC of 0.82).Our results revealed that the bisphenols and phthalates are more potent than partial EHs for gestational age or delivery time.This study represents the use of machine learning methods for quantitative analysis of pregnancy-related EDCs and EHs for understanding the EDCs’mixture effect on pregnancy with potential clinical utilities. 展开更多
关键词 EDCS chemicals INVESTIGATION
原文传递
Machine Learning for Investigation on Endocrine-Disrupting Chemicals with Gestational Age and Delivery Time in a Longitudinal Cohort
6
作者 Hemi Luan Hongzhi Zhao +7 位作者 Jiufeng Li Yanqiu Zhou Jing Fang Hongxiu Liu Yuanyuan Li Wei Xia Shunqing Xu Zongwei Cai 《Research》 EI CAS CSCD 2022年第1期133-143,共11页
Endocrine-disrupting chemicals(EDCs)are widespread environmental chemicals that are often considered as risk factors with weak activity on the hormone-dependent process of pregnancy.However,the adverse effects of EDCs... Endocrine-disrupting chemicals(EDCs)are widespread environmental chemicals that are often considered as risk factors with weak activity on the hormone-dependent process of pregnancy.However,the adverse effects of EDCs in the body of pregnant women were underestimated.The interaction between dynamic concentration of EDCs and endogenous hormones(EHs)on gestational age and delivery time remains unclear.To define a temporal interaction between the EDCs and EHs during pregnancy,comprehensive,unbiased,and quantitative analyses of 33 EDCs and 14 EHs were performed for a longitudinal cohort with 2317 pregnant women.We developed a machine learning model with the dynamic concentration information of EDCs and EHs to predict gestational age with high accuracy in the longitudinal cohort of pregnant women.The optimal combination of EHs and EDCs can identify when labor occurs(time to delivery within two and four weeks,AUROC of 0.82).Our results revealed that the bisphenols and phthalates are more potent than partial EHs for gestational age or delivery time.This study represents the use of machine learning methods for quantitative analysis of pregnancy-related EDCs and EHs for understanding the EDCs’mixture effect on pregnancy with potential clinical utilities. 展开更多
关键词 EDCS chemicals INVESTIGATION
原文传递
Catalytic conversion of lignocellulosic biomass into chemicals and fuels 被引量:8
7
作者 Weiping Deng Yunchao Feng +21 位作者 Jie Fu Haiwei Guo Yong Guo Buxing Han Zhicheng Jiang Lingzhao Kong Changzhi Li Haichao Liu Phuc T.T.Nguyen Puning Ren Feng Wang Shuai Wang Yanqin Wang Ye Wang Sie Shing Wong Kai Yan Ning Yan Xiaofei Yang Yuanbao Zhang Zhanrong Zhang Xianhai Zeng Hui Zhou 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期10-114,共105页
In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a pro... In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a promising feedstock.This review focuses on the state-of-the-art catalytic transformation of lignocellulosic biomass into value-added chemicals and fuels.Following a brief introduction on the structure,major resources and pretreatment methods of lignocellulosic biomass,the catalytic conversion of three main components,i.e.,cellulose,hemicellulose and lignin,into various compounds are comprehensively discussed.Either in separate steps or in one-pot,cellulose and hemicellulose are hydrolyzed into sugars and upgraded into oxygen-containing chemicals such as 5-HMF,furfural,polyols,and organic acids,or even nitrogen-containing chemicals such as amino acids.On the other hand,lignin is first depolymerized into phenols,catechols,guaiacols,aldehydes and ketones,and then further transformed into hydrocarbon fuels,bioplastic precursors and bioactive compounds.The review then introduces the transformations of whole biomass via catalytic gasification,catalytic pyrolysis,as well as emerging strategies.Finally,opportunities,challenges and prospective of woody biomass valorization are highlighted. 展开更多
关键词 Lignocelullose BIOMASS Catalytic conversion Biofuels Renewable chemicals
下载PDF
Chemicals Used in Polymeric Material Coated Waste Paper Composites
8
作者 Zübeyde Bülbül Birol Üner 《Journal of Materials Science and Chemical Engineering》 2023年第5期1-10,共10页
In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), ... In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), Titanate and Silanyl (Vinyltriethoxysilane) were added waste paper. Composite boards were pressed and cut in 1 × 30 × 30 cm. In order to identify some properties of the produced boards, experimental works were applied according to the standards. In conclusion, bending stress reduced with filler materials and chemicals was reduced even more than the bending stress except for some experimental groups. In addition, it was observed that the coupling chemicals increased the bending strength and modulus of elasticity compared to the fillers. 展开更多
关键词 Matching chemicals Paper Composites Filling Materials POLYMERS Coupling Agents Paper Fibers
下载PDF
Surface modification of Cu_(2)O with stabilized Cu^(+) for highly efficient and stable CO_(2) electroreduction to C_(2+) chemicals
9
作者 Ziyu Zhou Shuyu Liang +4 位作者 Jiewen Xiao Tianyu Zhang Min Li Wenfu Xie Qiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期277-285,共9页
Copper(Cu)-based materials are known as the most attractive catalysts for electrochemical carbon dioxide reduction reaction(CO_(2)RR),especially the Cu^(+) species(e.g.,Cu_(2)O),which show excellent capability for cat... Copper(Cu)-based materials are known as the most attractive catalysts for electrochemical carbon dioxide reduction reaction(CO_(2)RR),especially the Cu^(+) species(e.g.,Cu_(2)O),which show excellent capability for catalyzing CO_(2) to C_(2+) chemicals because of their unique electronic structure.However,the active Cu^(+) species are prone to be reduced to metallic Cu under an electroreduction environment,thus resulting in fast deactivation and poor selectivity.Here,we developed an advanced surface modification strategy to maintain the active Cu^(+) species via assembling a protective layer of metal-organic framework(copper benzenetricarboxylate,CuBTC) on the surface of Cu_(2)O octahedron(Cu_(2)O@CuBTC).It's encouraging to see that the Cu_(2)O@CuBTC heterostructure outperforms the bare Cu_(2)O octahedron in catalyzing CO_(2) to C_(2+) chemicals and dramatically enhances the ratio of C_(2)H_(4)/CH_(4) products.A systematic study reveals that the introduced CuBTC shell plays a critical role in maintaining the active Cu^(+) species in Cu_(2)O@CuBTC heterostructure under reductive conditions.This work offers a practical strategy for improving the catalytic performance of CO_(2)RR over copper oxides and also establishes a route to maintain the state of valence-sensitive catalysts. 展开更多
关键词 CO_(2)RR Copper Oxide Metal-organic Framework Core-shell Structure C_(2+)chemicals
下载PDF
Rational design of F,N-rich artificial interphase via chemical prelithiation initiation strategy enabling high coulombic efficiency and stable micro-sized SiO anodes
10
作者 Quanyan Man Hengtao Shen +3 位作者 Chuanliang Wei Baojuan Xi Shenglin Xiong Jinkui Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期224-232,共9页
Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid ... Silicon monoxide(SiO)is regarded as a potential candidate for anode materials of lithium-ion batteries(LIBs).Unfortunately,the application of SiO is limited by poor initial Coulombic efficiency(ICE)and unsteady solid electrolyte interface(SEI),which induce low energy,short cycling life,and poor rate properties.To address these drawbacks of SiO,we achieve in-situ construction of robust and fast-ion conducting F,N-rich SEI layer on prelithiated micro-sized SiO(P-μSiO)via the simple and continuous treatment ofμSiO in mild lithium 4,4′-dimethylbiphenyl solution and nonflammable hexafluorocyclotriphosphazene solution.Chemical prelithiation eliminates irreversible capacity through pre-forming inactive lithium silicates.Meanwhile,the symbiotic F,N-rich SEI with good mechanical stability and fast Li^(+)permeability is conductive to relieve volume expansion ofμSiO and boost the Li+diffusion kinetics.Consequently,the P-μSiO realizes an impressive electrochemical performance with an elevated ICE of 99.57%and a capacity retention of 90.67%after 350 cycles.Additionally,the full cell with P-μSiO anode and commercial LiFePO_(4) cathode displays an ICE of 92.03%and a high reversible capacity of 144.97 mA h g^(-1).This work offers a general construction strategy of robust and ionically conductive SEI for advanced LIBs. 展开更多
关键词 chemical prelithiation Silicon monoxide SEI Lithium-ion batteries INTERPHASE engineering
下载PDF
Extraction,chemical components,bioactive functions and adulteration identification of walnut oils:A review
11
作者 Yuan Gao Jia Hu +6 位作者 Xia Su Qi Li Caihong Su Yongling Li Gaiqin Ma Siyu Zhang Xiuzhu Yu 《Grain & Oil Science and Technology》 CAS 2024年第1期30-41,共12页
Walnut oil is a functional wood oil known to researchers that may potentially be a large source of Chinese edible oils.There are various extraction methods for walnut oil,including traditional(pressing,solvent-and enz... Walnut oil is a functional wood oil known to researchers that may potentially be a large source of Chinese edible oils.There are various extraction methods for walnut oil,including traditional(pressing,solvent-and enzymeassisted extraction)and novel methods(microwave,ultrasound,supercritical CO_(2),subcritical and other extraction technologies).Walnut oil is rich in nutrients,including phytosterols,tocopherols,polyphenols,squalene and minerals.It provides many health benefits,such as antioxidant,antitumor,anti-inflammatory,antidiabetic and lipid metabolism-related functions.In addition,the authentication of walnut oil has received much research attention.The present review provides detailed research on walnut oil extraction,composition,health benefits and adulteration identification methods.The path toward further walnut oil improvement in the context of the market value of walnut oil is also discussed. 展开更多
关键词 Extraction technology chemical composition Bioactive AUTHENTICATION
下载PDF
The chemical environment and structural ordering in liquid Mg-Y-Zn system:An ab-initio molecular dynamics investigation of melt for the formation mechanism of LPSO structure
12
作者 Tangpeng Ma Jin Wang +5 位作者 Kaiming Cheng Chengwei Zhan Jixue Zhou Jingyu Qin Guochen Zhao Xinfang Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期815-824,共10页
In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular... In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular dynamics simulation.In liquid Mg-rich Mg-Y alloys,the strong Mg-Y interaction is determined,which promotes the formation of fivefold symmetric local structure.For Mg-Zn alloys,the weak Mg-Zn interaction results in the fivefold symmetry weakening in the liquid structure.Due to the coexistence of Y and Zn,the strong attractive interaction is introduced in liquid Mg-Y-Zn ternary alloy,and contributes to the clustering of Mg,Y,Zn launched from Zn.What is more,the distribution of local structures becomes closer to that in pure Mg compared with that in binary Mg-Y and Mg-Zn alloys.These results should relate to the origins of the Y/Zn segregation zone and close-packed stacking mode in LPSO structure,which provides a new insight into the formation mechanism of LPSO structure at atomic level. 展开更多
关键词 Mg-Y-Zn chemical environment Structural ordering ab-initio molecular dynamics
下载PDF
Plant Chemical Defenses against Insect Herbivores—Using theWild Tobacco as a Model
13
作者 Guangwei Sun Xuanhao Zhang +4 位作者 Yi Liu Liguang Chai Daisong Liu Zhenguo Chen Shiyou Lü 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第4期641-659,共19页
The Nicotiana genus, commonly known as tobacco, holds significant importance as a crucial economic crop. Confrontedwith an abundance of herbivorous insects that pose a substantial threat to yield, tobacco has develope... The Nicotiana genus, commonly known as tobacco, holds significant importance as a crucial economic crop. Confrontedwith an abundance of herbivorous insects that pose a substantial threat to yield, tobacco has developed adiverse and sophisticated array of mechanisms, establishing itself as a model of plant ecological defense. Thisreview provides a concise overview of the current understanding of tobacco’s defense strategies against herbivores.Direct defenses, exemplified by its well-known tactic of secreting the alkaloid nicotine, serve as a potent toxinagainst a broad spectrum of herbivorous pests. Moreover, in response to herbivore attacks, tobacco enhancesthe discharge of volatile compounds, harnessing an indirect strategy that attracts the predators of the herbivores.The delicate balance between defense and growth leads to the initiation of most defense strategies only after aherbivore attack. Among plant hormones, notably jasmonic acid (JA), play central roles in coordinating thesedefense processes. JA signaling interacts with other plant hormone signaling pathways to facilitate the extensivetranscriptional and metabolic adjustments in plants following herbivore assault. By shedding light on these ecologicaldefense strategies, this review emphasizes not only tobacco’s remarkable adaptability in its natural habitatbut also offers insights beneficial for enhancing the resilience of current crops. 展开更多
关键词 TOBACCO HERBIVORE chemical defense jasmonic acid REGULATION
下载PDF
Expanding the Boundaries of the Chemical Space of DNA Methyltransferase 1 Modulators
14
作者 Massyel S. Martínez-Cortés Diana L. Prado-Romero José L. Medina-Franco 《Computational Molecular Bioscience》 2024年第1期1-16,共16页
DNA methyltransferase 1 (DNMT1), one of the main epigenetic targets, is involved in the duplication of the DNA methylation pattern during replication, and it is essential for proper mammalian development. Small molecu... DNA methyltransferase 1 (DNMT1), one of the main epigenetic targets, is involved in the duplication of the DNA methylation pattern during replication, and it is essential for proper mammalian development. Small molecule DNMT1 modulators are attractive for biochemical epigenetic studies and have the potential to become drugs. So far, more than five hundred small molecules have been reported as DNMT1 inhibitors. However, only a limited number of DNMT1 activators have been disclosed because, at least in part, DNMT1 activators are typically regarded as negative data in virtual screening campaigns or optimization projects. This manuscript aims to report the chemical structures and biological activity of small molecules that increase the enzymatic activity of DNMT1. Results of the biochemical experimental assays are discussed. It was found that small molecule activators have a large variety of chemical scaffolds but share pharmacophore features. Visual analysis of the chemical space and multiverse based on molecular fingertips supported that activators are structurally diverse. This is the first report of eight small molecules that increase the enzymatic activity of DNMT1 by more than 400% in an enzymatic-based assay. The outcome warrants further investigation of the epigenetic activity of the compounds in a counter-screen assay, e.g., cell-based and in vivo context. 展开更多
关键词 chemical Multiverse CHEMOINFORMATICS EPIGENETICS Pharmacophore Hypothesis Small Molecules
下载PDF
Some of the Chemical and Physical Characteristics of the Graff River in Kut City, Iraq
15
作者 Salih Mahdi Ali Imad Kazem Ali 《Open Journal of Modern Hydrology》 CAS 2024年第1期56-67,共12页
Some of the chemical and physical water qualities of the Graff River in the city of Kut were studied, and for two sites of the river, One was at the Crimea site, the other in the Jihad district, and for the period fro... Some of the chemical and physical water qualities of the Graff River in the city of Kut were studied, and for two sites of the river, One was at the Crimea site, the other in the Jihad district, and for the period from October/2018 to March/2019, Seven variables of river water have been analyzed: temperature PH, electrical conductivity, TDS, turbidity, alkaline, and chloride. The results showed that most of the chemical and physical water properties of the river were in normal proportions and did not rise, except for the turbidity, which was at a very high level, and that the pH values were close to the basal side. The results of the statistical analysis revealed positive significant relationships between the pH and (chloride and TDS). On the other hand, between electrical conductivity and both previous variables as well. And a negative significant connection between temperature and alkaline. 展开更多
关键词 Graff River Kut City Iraq chemical Characteristics Physical Characteristics
下载PDF
Jet formation and penetration performance of a double-layer charge liner with chemically-deposited tungsten as the inner liner
16
作者 Bihui Hong Wenbin Li +2 位作者 Yiming Li Zhiwei Guo Binyou Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期374-385,共12页
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double... This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner. 展开更多
关键词 Shaped charge chemical vapor deposition TUNGSTEN Double-layer charge liner X-ray PENETRATION
下载PDF
Effects of dietary Clostridium butyricum and rumen protected fat on meat quality,oxidative stability,and chemical composition of finishing goats
17
作者 Meimei Zhang Zhiyue Zhang +9 位作者 Xinlong Zhang Changming Lu Wenzhu Yang Xiaolai Xie Hangshu Xin Xiaotan Lu Mingbo Ni Xinyue Yang Xiaoyang Lv Peixin Jiao 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期911-924,共14页
Background Clostridium butyricum(CB)is a probiotic that can regulate intestinal microbial composition and improve meat quality.Rumen protected fat(RPF)has been shown to increase the dietary energy density and provide ... Background Clostridium butyricum(CB)is a probiotic that can regulate intestinal microbial composition and improve meat quality.Rumen protected fat(RPF)has been shown to increase the dietary energy density and provide essential fatty acids.However,it is still unknown whether dietary supplementation with CB and RPF exerts beneficial effects on growth performance and nutritional value of goat meat.This study aimed to investigate the effects of dietary CB and RPF supplementation on growth performance,meat quality,oxidative stability,and meat nutritional value of finishing goats.Thirty-two goats(initial body weight,20.5±0.82 kg)were used in a completely randomized block design with a 2 RPF supplementation(0 vs.30 g/d)×2 CB supplementation(0 vs.1.0 g/d)factorial treatment arrangement.The experiment included a 14-d adaptation and 70-d data and sample collection period.The goats were fed a diet consisted of 400 g/kg peanut seedling and 600 g/kg corn-based concentrate(dry matter basis).Result Interaction between CB and RPF was rarely observed on the variables measured,except that shear force was reduced(P<0.05)by adding CB or RPF alone or their combination;the increased intramuscular fat(IMF)content with adding RPF was more pronounced(P<0.05)with CB than without CB addition.The pH24h(P=0.009),a*values(P=0.007),total antioxidant capacity(P=0.050),glutathione peroxidase activities(P=0.006),concentrations of 18:3(P<0.001),20:5(P=0.003)and total polyunsaturated fatty acids(P=0.048)were increased,whereas the L*values(P<0.001),shear force(P=0.050)and malondialdehyde content(P=0.044)were decreased by adding CB.Furthermore,CB supplementation increased essential amino acid(P=0.027),flavor amino acid(P=0.010)and total amino acid contents(P=0.024)as well as upregulated the expression of lipoprotein lipase(P=0.034)and peroxisome proliferator-activated receptorγ(PPARγ)(P=0.012),and downregulated the expression of stearoyl-CoA desaturase(SCD)(P=0.034).The RPF supplementation increased dry matter intake(P=0.005),averaged daily gain(trend,P=0.058),hot carcass weight(P=0.046),backfat thickness(P=0.006),concentrations of 16:0(P<0.001)and c9-18:1(P=0.002),and decreased the shear force(P<0.001),isoleucine(P=0.049)and lysine content(P=0.003)of meat.In addition,the expressions of acetyl-CoA carboxylase(P=0.003),fatty acid synthase(P=0.038),SCD(P<0.001)and PPARγ(P=0.022)were upregulated due to RPF supplementation,resulting in higher(P<0.001)content of IMF.Conclusions CB and RPF could be fed to goats for improving the growth performance,carcass traits and meat quality,and promote fat deposition by upregulating the expression of lipogenic genes of Longissimus thoracis muscle. 展开更多
关键词 chemical composition Clostridium butyricum Goats Meat quality Oxidative stability Rumen protected fat
下载PDF
Shock-induced energy localization and reaction growth considering chemical-inclusions effects for crystalline explosives
18
作者 Ruqin Liu Yanqing Wu +3 位作者 Xinjie Wang Fenglei Huang Xiaona Huang Yushi Wen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期278-294,共17页
Chemical inclusions significantly alter shock responses of crystalline explosives in macroscale gap experiments but their microscale dynamics origin remains unclear.Herein shock-induced energy localization,overall phy... Chemical inclusions significantly alter shock responses of crystalline explosives in macroscale gap experiments but their microscale dynamics origin remains unclear.Herein shock-induced energy localization,overall physical responses,and reactions in a-1,3,5-trinitro-1,3,5-triazinane(a-RDX)crystal entrained various chemical inclusions were investigated by the multi-scale shock technique implemented in the reactive molecular dynamics method.Results indicated that energy localization and shock reaction were affected by the intrinsic factors within chemical inclusions,i.e.,phase states,chemical compositions,and concentrations.The atomic origin of chemical-inclusions effects on energy localization is dependent on the dynamics mechanism of interfacial molecules with free space volume,which includes homogeneous intermolecular compression,interfacial impact and shear,and void collapse and jet.As introducing various chemical inclusions,the initiation of those dynamics mechanisms triggers diverse decay rates of bulk RDX molecules and hereby impacts on growth speeds of final reactions.Adding chemical inclusions can reduce the effectiveness of the void during the shock impacting.Under the shockwave velocity of 9 km/s,the parent RDX decay rate in RDX entrained amorphous carbon decreases the most and is about one fourth of that in RDX with a vacuum void,and solid HMX and TATB inclusions are more reactive than amorphous carbon but less reactive than dry air or acetone inclusions.The lessdense shocking system denotes the greater increases in local temperature and stress,the faster energy liberation,and the earlier final reaction into equilibrium,revealing more pronounced responses to the present intense shockwave.The quantitative models associated with the relative system density(RD_(sys))were proposed for indicating energy-localization mechanisms and evaluating initiation safety in the shocked crystalline explosive.RD_(sys)is defined by the density ratio of defective RDX to perfect crystal after dynamics relaxation and reveals the global density characteristic in shocked systems filled with chemical inclusions.When RD_(sys)is below 0.9,local hydrodynamic jet initiated by void collapse dominates upon energy localization instead of interfacial impact.This study sheds light on novel insights for understanding the shock chemistry and physical-based atomic origin in crystalline explosives considering chemical-inclusions effects. 展开更多
关键词 Shock responses Energy localization Crystalline explosives chemical inclusions Reactive molecular dynamics
下载PDF
The autophagy-lysosome pathway:a potential target in the chemical and gene therapeutic strategies for Parkinson’s disease
19
作者 Fengjuan Jiao Lingyan Meng +1 位作者 Kang Du Xuezhi Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期139-158,共20页
Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular... Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease. 展开更多
关键词 AUTOPHAGY chemical therapy gene therapy Parkinson’s disease Α-SYNUCLEIN
下载PDF
Combined application of organic fertilizer and chemical fertilizer alleviates the kernel position effect in summer maize by promoting post-silking nitrogen uptake and dry matter accumulation
20
作者 Lichao Zhai Lihua Zhang +7 位作者 Yongzeng Cui Lifang Zhai Mengjing Zheng Yanrong Yao Jingting Zhang Wanbin Hou Liyong Wu Xiuling Jia 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1179-1194,共16页
Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CA... Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CAOFCF)can alleviate the kernel position effect of summer maize,field experiments were conducted during the 2019 and 2020 growing seasons,and five treatments were assessed:CF,100%chemical fertilizer;OFCF1,15%organic fertilizer+85%chemical fertilizer;OFCF2,30%organic fertilizer+70%chemical fertilizer;OFCF3,45%organic fertilizer+55%chemical fertilizer;and OFCF4,60%organic fertilizer+40%chemical fertilizer.Compared with the CF treatment,the OFCF1 and OFCF2 treatments significantly alleviated the kernel position effect by increasing the weight ratio of inferior kernels to superior kernels and reducing the weight gap between the superior and inferior kernels.These effects were largely due to the improved filling and starch accumulation of inferior kernels.However,there were no obvious differences in the kernel position effect among plants treated with CF,OFCF3,or OFCF4 in most cases.Leaf area indexes,post-silking photosynthetic rates,and net assimilation rates were higher in plants treated with OFCF1 or OFCF2 than in those treated with CF,reflecting an enhanced photosynthetic capacity and improved postsilking dry matter accumulation(DMA)in the plants treated with OFCF1 or OFCF2.Compared with the CF treatment,the OFCF1 and OFCF2 treatments increased post-silking N uptake by 66.3 and 75.5%,respectively,which was the major factor driving post-silking photosynthetic capacity and DMA.Moreover,the increases in root DMA and zeatin riboside content observed following the OFCF1 and OFCF2 treatments resulted in reduced root senescence,which is associated with an increased post-silking N uptake.Analyses showed that post-silking N uptake,DMA,and grain yield in summer maize were negatively correlated with the kernel position effect.In conclusion,the combined application of 15-30%organic fertilizer and 70-85%chemical fertilizer alleviated the kernel position effect in summer maize by improving post-silking N uptake and DMA.These results provide new insights into how CAOFCF can be used to improve maize productivity. 展开更多
关键词 chemical fertilizer dry mater accumulation kernel position effect N uptake organic fertilizer
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部