Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood ve...Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood vessels are related to many disorders like stroke,myocardial infarction,aneurysm,and diabetes,which are important causes of death worldwide.Translational research for new appro-aches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems.Although mice or rats have been widely used,applying data from animal studies to human-specific vascular physiology and pathology is difficult.The rise of induced pluripotent stem cells(iPSCs)provides a reliable in vitro resource for disease modeling,regenerative medicine,and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells.This review summarizes the latest progress from the establishment of iPSCs,the strategies for differentiating iPSCs into vascular cells,and the in vivo trans-plantation of these vascular derivatives.It also introduces the application of these technologies in disease modeling,drug screening,and regenerative medicine.Additionally,the application of high-tech tools,such as omics analysis and high-throughput sequencing,in this field is reviewed.展开更多
AIM: To test the hypothesis to block VEGF expression of SMMC-7721 hepatoma cells may inhibit tumor growth using the rat hepatoma model. METHODS: Amplify the 200 VEGF cDNA fragment and insert it into human U6 gene cass...AIM: To test the hypothesis to block VEGF expression of SMMC-7721 hepatoma cells may inhibit tumor growth using the rat hepatoma model. METHODS: Amplify the 200 VEGF cDNA fragment and insert it into human U6 gene cassette in the reverse orientation transcribing small antisense RNA which could specifically interact with VEGF165, and VEGF121 mRNA. Construct the retroviral vector containing this antisense VEGF U6 cassette and package the replication-deficient recombinant retrovirus. SMMC-7721 cells were transduced with these virus and positive clones were selected with G418. PCR and Southern blot analysis were performed to determine if U6 cassette integrated into the genomic DNA of positive clone. Transfected tumor cells were evaluated for RNA expression by ribonuclease protection assays. The VEGF protein in the supernatant of parental tumor cells and genetically modified tumor cells was determined with ELISA. In vitro and in vivo growth properties of antisense VEGF cell clone in nude mice were analyzed. RESULTS: Restriction enzyme digestion and PCR sequencing verified that the antisense VEGF RNA retroviral vector was successfully constructed.After G418 selection, resistant SMMC-7721 cell clone was picked up. PCR and Southern blot analysis suggested that U6 cassette was integrated into the cell genomic DNA. Stable SMMC-7721 cell clone transduced with U6 antisense RNA cassette could express 200 bp small antisense VEGF RNA and secrete reduced levels of VEGF in culture condition. Production of VEGF by antisense transgene-expressing cells was 65+/-10 ng/L per 10(6) cells, 42045 ng/L per 10(6) cells in sense group and 485+/-30 ng/L per 10(6) cells in the negative control group, (P【 0.05). The antisense-VEGF cell clone appeared phenotypically indistinguishable from SMMC-7721 cells and SMMC-7721 cells transfected sense VEGF. The growth rate of the antisense-VEGF cell clone was the same as the control cells. When S.C. was implanted into nude mice, growth of antisense-VEGF cell lines was greatly inhibited compared with control cells. CONCLUSION: Expression of antisense VEGF RNA in SMMC-7721 cells could decrease the tumorigenicity, and antisense-VEGF gene therapy may be an adjuvant treatment for hepatoma.展开更多
Pericytes,as the mural cells surrounding the microvasculature,play a critical role in the regulation of microcirculation;however,how these cells respond to ischemic stroke remains unclear.To determine the temporal alt...Pericytes,as the mural cells surrounding the microvasculature,play a critical role in the regulation of microcirculation;however,how these cells respond to ischemic stroke remains unclear.To determine the temporal alterations in pericytes after ischemia/reperfusion,we used the 1-hour middle cerebral artery occlusion model,which was examined at 2,12,and 24 hours after reperfusion.Our results showed that in the reperfused regions,the cerebral blood flow decreased and the infarct volume increased with time.Furthermore,the pericytes in the infarct regions contracted and acted on the vascular endothelial cells within 24 hours after reperfusion.These effects may result in incomplete microcirculation reperfusion and a gradual worsening trend with time in the acute phase.These findings provide strong evidence for explaining the“no-reflow”phenomenon that occurs after recanalization in clinical practice.展开更多
AIM:To clarify whether the vasoconstrictory response is impaired and to study vascular function in patients with migraine during the headache attack.METHODS:We studied vascular reactivity in the resistance arteries by...AIM:To clarify whether the vasoconstrictory response is impaired and to study vascular function in patients with migraine during the headache attack.METHODS:We studied vascular reactivity in the resistance arteries by using the forearm perfusion technique associated with plethysmography.We measuredforearm blood flow by strain-gauge plethysmography during intra-brachial infusion of acetylcholine,sodium nitroprusside or norepinephrine in 11 controls and 13patients with migraine,11 of them(M) in the interval between the migraine attacks and 4 during a headache attack(MH).Written informed consent was obtained from patients and healthy controls,and the study was approved by the Ethics Committee of the University Federico Ⅱ.RESULTS:Compared to healthy control subjects,in patients with migraine studied during the interictal period,the vasodilating effect of acetylcholine,that acts through the stimulation of endothelial cells and the release of nitric oxide,was markedly reduced,but became normal during the headache attack(P<0.05by analysis of variance).The response to nitroprusside,which directly relaxes vascular smooth muscle cells(VSMCs),was depressed in patients with migraine studied during the interictal period,but normal during the headache attack(P<0.005).During norepinephrine infusion,forearm blood flow decreased in control subjects(-40% ± 5%,P<0.001).In contrast,in patients with migraine,either when studied during or free of the headache attack forearm blood flow did not change compared to the baseline value(-3%±13% and-10.4%±15%,P>0.05).CONCLUSION:In migrainers,the impaired relaxation of VSMCs is restored during the headache attack.The vasoconstrictory response is impaired and remains unchanged during the migraine attack.展开更多
Objective To study the effects of quercetin (Que) on the release of endothelin-1 (ET-1) and prostacylin(PGI2) by normal human vascuiar endothelial cell (VEC). Methods Radioimmunoassay(RIA) was used to assess the amoun...Objective To study the effects of quercetin (Que) on the release of endothelin-1 (ET-1) and prostacylin(PGI2) by normal human vascuiar endothelial cell (VEC). Methods Radioimmunoassay(RIA) was used to assess the amount of ET-1 and PGI2 produced by VEC. VEC prollferation was assessed by tetrazolium(MTT) assay. Results Que increased the normal VEC prollferation at the concentration or 5, 2o, 4o, 8o, 1oompol/L and increased the production of PG12 and inhibits the release of ET by the normal VEC at the concentratiou or 5, 2o and 8ompol/L. Que at the concentration of 5, 2o and 8omol/L had no direct effect on morphology of the normal VEC. ConcIusion Que can stimulate the proliferation of VEC and inhibit tbe reIease of ET-1 and increase the formation of PGI2. The data suggest that Que might be beneficial for the prevention and treatment of vascular endothelial injury-related cardiovascular diseases, such as atherosclerosls and thromboembolism diseases.展开更多
AIM: To establish the role of vascular endothelial growth factor (VEGF) in the oncogenesis of human gastric carcinoma more directly. METHODS: The expression of VEGF and its receptor kinase-domain insert containing rec...AIM: To establish the role of vascular endothelial growth factor (VEGF) in the oncogenesis of human gastric carcinoma more directly. METHODS: The expression of VEGF and its receptor kinase-domain insert containing receptor (KDR) in human gastric cancer tissue were observed by immunohistochemical staining. VEGF levels were manipulated in human gastric cancer cell using eukaryotic expression constructs designed to express the complete VEGF(165) complimentary DNA in either the sense or antisense orientation. The biological changes of the cells were observed in which VEGF was up-regulated or down-regulated. RESULTS: VEGF-positive rate was 50%, and VEGF was mainly localized in the cytoplasm and membrane of the tumor cells, while KDR was mainly located in the membrane of vascular endothelial cells in gastric cancer tissues and peri-cancerous tissue. In 2 cases of 50 specimens, the gastric cancer cells expressed KDR, localized in both the cytoplasm and membrane. Introduction of VEGF(165) antisense into human gastric cancer cells (SGC-7901, immunofluorescence intensity, 31.6%)) resulted in a significant reduction in VEGF-specific messenger RNA and total and cell surface VEGF protein (immunofluorescence intensity, 8.9%) (P【0.05). Conversely, stable integration of VEGF(165) in the sense orientation resulted in an increase in cellular and cell surface VEGF (immunofluorescence intensity, 75.4%) (P【0.05). Lowered VEGF levels were associated with a marked decrease in the growth of nude mouse xenografted tumor (at 33 days postimplantation, tumor volume: 345.40 +/- 136.31 mm3)(P【0.05 vs control SGC-7901 group: 1534.40 +/- 362.88 mm3), whereas up-regulation of VEGF resulted in increased xenografted tumor size (at 33 days postimplantation, tumor volume: 2350.50 +/- 637.70 mm3) (P【0.05 vs control SGC-7901 group). CONCLUSION: This study provides direct evidence that VEGF plays an important role in the oncogenesis of human gastric cancer.展开更多
AIM: To construct a stable transfectant of human liver carcinoma cell line SMMC7721 that could secret human endostatin and to explore the effect of human endostatin expressed by the transfectant on endothelial cell pr...AIM: To construct a stable transfectant of human liver carcinoma cell line SMMC7721 that could secret human endostatin and to explore the effect of human endostatin expressed by the transfectant on endothelial cell proliferation. METHODS: Recombinant retroviral plasmid pLncx-Endo containing the cDNA for human endostatin gene together with rat albumin signal peptide was engineered and transferred into SMMC7721 cell by lipofectamine. After selection with G418, endostatin-transfected SMMC7721 cells were chosen and expanded. Immunohistochemical staining and Western blot were used to detect the expression of human endostatin in transfected SMMC7721 cells and its medium. The conditioned medium of endostatin-transfected and control SMMC7721 cells were collected to cultivate with human umbilical vein endothelial cells for 72 hours. The inhibitory effect of endostatin, expressed by transfected SMMC7721 cells, on endothelial proliferation in vitro was observed by using MTT assay. RESULTS: A 550 bp specific fragment of endostatin gene was detected from the PCR product of endostatin-transfected SMMC7721 cells. Immunohistochemistry and Western blot analysis confirmed the expression and secretion of foreign human endostatin protein by endostatin-transfected SMMC7721 cells. In vitro endothelial proliferation assay showed that 72 hours after cultivation with human umbilical vein endothelial cells, the optical density (OD) in group using the medium from endostatin-transfected SMMC7721 cells was 0.51 +/- 0.06, lower than that from RPMI 1640 group (0.98 +/- 0.09) or that from control plasmid pLncx-transfected SMMC7721 cells (0.88 +/- 0.11). The inhibitory rate for medium from endostatin-transfected SMMC7721 cells was 48%, significantly higher than that from empty plasmid pLncx-transfected SMMC7721 cells (10.2%, P【0.01). CONCLUSION: Human endostatin can be stably expressed by SMMC7721 cell transferred with human endostatin gene and its product can significantly inhibit the proliferation of human umbilical vein endothelial cell in vitro.展开更多
INTRODUCTIONMultiple organ dysfunction syndrome (MODS) isthought to be a frequent consequence of sepsis[1-3].Despite substantial advances in our knowledge and understanding of the basic pathophysiologic mechanisms[4-7...INTRODUCTIONMultiple organ dysfunction syndrome (MODS) isthought to be a frequent consequence of sepsis[1-3].Despite substantial advances in our knowledge and understanding of the basic pathophysiologic mechanisms[4-7], in critically ill patients infections and sepsis are still associated with a high mortality[8,9].展开更多
OBJECTIVES: To investigate the effects of glucose and free fatty acids (FFAs) on the proliferation and cell cycle of human vascular endothelial cells in vitro, and to examine whether the combined presence of elevated ...OBJECTIVES: To investigate the effects of glucose and free fatty acids (FFAs) on the proliferation and cell cycle of human vascular endothelial cells in vitro, and to examine whether the combined presence of elevated FFAs and glucose may cross-amplify their individual injurious effects. METHODS: Cultured human vascular endothelial cells (ECV304) were incubated with various concentrations of glucose and/or FFAs (palmitate and/or oleate) for 24 - 96 h. Morphologic alterations were observed using a phase contrast microscope and an electron microscope. Inhibition of proliferation was measured by a colorimetric 3-[4, 5-dimethyl thiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell viability was determined using trypan blue exclusion. Distribution of cells along phases of the cell cycle was analyzed by flow cytometry. RESULTS: Glucose 15 or 30 mmol/L, palmitate (PA) 0.25 or 0.5 mmol/L, and oleate (OA) 0.5 mmol/L inhibited proliferation and accelerated death of endothelial cells in a dose-and-time-dependent manner. After treatment with elevated glucose and/or FFAs, the G(0)/G(1) phase cells increased, whereas S phase cells decreased, suggesting that high glucose and/or FFAs mainly arrested endothelial cells at G(0)/G(1) phase. The inhibitive rates of proliferation and population of dead cells in endothelial cells incubated with glucose plus FFAs (glucose 30 mmol/L + PA 0.25 mmol/L, glucose 30 mmol/L + OA 0.5 mmol/L, glucose 30 mmol/L + PA 0.25 mmol/L + OA 0.5 mmol/L) increased more markedly than those treated with high glucose or FFAs (PA and/or OA) alone. CONCLUSION: Both high ambient glucose and FFAs can inhibit proliferation and accelerate death of endothelial cells in vitro. These changes were cross-amplified in the combined presence of high levels of glucose and FFAs.展开更多
文摘Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood vessels are related to many disorders like stroke,myocardial infarction,aneurysm,and diabetes,which are important causes of death worldwide.Translational research for new appro-aches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems.Although mice or rats have been widely used,applying data from animal studies to human-specific vascular physiology and pathology is difficult.The rise of induced pluripotent stem cells(iPSCs)provides a reliable in vitro resource for disease modeling,regenerative medicine,and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells.This review summarizes the latest progress from the establishment of iPSCs,the strategies for differentiating iPSCs into vascular cells,and the in vivo trans-plantation of these vascular derivatives.It also introduces the application of these technologies in disease modeling,drug screening,and regenerative medicine.Additionally,the application of high-tech tools,such as omics analysis and high-throughput sequencing,in this field is reviewed.
基金Project supported by National Natural Science Foundation of China,No.863 Z2001-04
文摘AIM: To test the hypothesis to block VEGF expression of SMMC-7721 hepatoma cells may inhibit tumor growth using the rat hepatoma model. METHODS: Amplify the 200 VEGF cDNA fragment and insert it into human U6 gene cassette in the reverse orientation transcribing small antisense RNA which could specifically interact with VEGF165, and VEGF121 mRNA. Construct the retroviral vector containing this antisense VEGF U6 cassette and package the replication-deficient recombinant retrovirus. SMMC-7721 cells were transduced with these virus and positive clones were selected with G418. PCR and Southern blot analysis were performed to determine if U6 cassette integrated into the genomic DNA of positive clone. Transfected tumor cells were evaluated for RNA expression by ribonuclease protection assays. The VEGF protein in the supernatant of parental tumor cells and genetically modified tumor cells was determined with ELISA. In vitro and in vivo growth properties of antisense VEGF cell clone in nude mice were analyzed. RESULTS: Restriction enzyme digestion and PCR sequencing verified that the antisense VEGF RNA retroviral vector was successfully constructed.After G418 selection, resistant SMMC-7721 cell clone was picked up. PCR and Southern blot analysis suggested that U6 cassette was integrated into the cell genomic DNA. Stable SMMC-7721 cell clone transduced with U6 antisense RNA cassette could express 200 bp small antisense VEGF RNA and secrete reduced levels of VEGF in culture condition. Production of VEGF by antisense transgene-expressing cells was 65+/-10 ng/L per 10(6) cells, 42045 ng/L per 10(6) cells in sense group and 485+/-30 ng/L per 10(6) cells in the negative control group, (P【 0.05). The antisense-VEGF cell clone appeared phenotypically indistinguishable from SMMC-7721 cells and SMMC-7721 cells transfected sense VEGF. The growth rate of the antisense-VEGF cell clone was the same as the control cells. When S.C. was implanted into nude mice, growth of antisense-VEGF cell lines was greatly inhibited compared with control cells. CONCLUSION: Expression of antisense VEGF RNA in SMMC-7721 cells could decrease the tumorigenicity, and antisense-VEGF gene therapy may be an adjuvant treatment for hepatoma.
基金financially supported by the China Academy of Chinese Medical Sciences Innovation Fund,No.CI2021A03407(to WZB)the National Natural Science Foundation of China,No.81973789(to FFC).
文摘Pericytes,as the mural cells surrounding the microvasculature,play a critical role in the regulation of microcirculation;however,how these cells respond to ischemic stroke remains unclear.To determine the temporal alterations in pericytes after ischemia/reperfusion,we used the 1-hour middle cerebral artery occlusion model,which was examined at 2,12,and 24 hours after reperfusion.Our results showed that in the reperfused regions,the cerebral blood flow decreased and the infarct volume increased with time.Furthermore,the pericytes in the infarct regions contracted and acted on the vascular endothelial cells within 24 hours after reperfusion.These effects may result in incomplete microcirculation reperfusion and a gradual worsening trend with time in the acute phase.These findings provide strong evidence for explaining the“no-reflow”phenomenon that occurs after recanalization in clinical practice.
文摘AIM:To clarify whether the vasoconstrictory response is impaired and to study vascular function in patients with migraine during the headache attack.METHODS:We studied vascular reactivity in the resistance arteries by using the forearm perfusion technique associated with plethysmography.We measuredforearm blood flow by strain-gauge plethysmography during intra-brachial infusion of acetylcholine,sodium nitroprusside or norepinephrine in 11 controls and 13patients with migraine,11 of them(M) in the interval between the migraine attacks and 4 during a headache attack(MH).Written informed consent was obtained from patients and healthy controls,and the study was approved by the Ethics Committee of the University Federico Ⅱ.RESULTS:Compared to healthy control subjects,in patients with migraine studied during the interictal period,the vasodilating effect of acetylcholine,that acts through the stimulation of endothelial cells and the release of nitric oxide,was markedly reduced,but became normal during the headache attack(P<0.05by analysis of variance).The response to nitroprusside,which directly relaxes vascular smooth muscle cells(VSMCs),was depressed in patients with migraine studied during the interictal period,but normal during the headache attack(P<0.005).During norepinephrine infusion,forearm blood flow decreased in control subjects(-40% ± 5%,P<0.001).In contrast,in patients with migraine,either when studied during or free of the headache attack forearm blood flow did not change compared to the baseline value(-3%±13% and-10.4%±15%,P>0.05).CONCLUSION:In migrainers,the impaired relaxation of VSMCs is restored during the headache attack.The vasoconstrictory response is impaired and remains unchanged during the migraine attack.
文摘Objective To study the effects of quercetin (Que) on the release of endothelin-1 (ET-1) and prostacylin(PGI2) by normal human vascuiar endothelial cell (VEC). Methods Radioimmunoassay(RIA) was used to assess the amount of ET-1 and PGI2 produced by VEC. VEC prollferation was assessed by tetrazolium(MTT) assay. Results Que increased the normal VEC prollferation at the concentration or 5, 2o, 4o, 8o, 1oompol/L and increased the production of PG12 and inhibits the release of ET by the normal VEC at the concentratiou or 5, 2o and 8ompol/L. Que at the concentration of 5, 2o and 8omol/L had no direct effect on morphology of the normal VEC. ConcIusion Que can stimulate the proliferation of VEC and inhibit tbe reIease of ET-1 and increase the formation of PGI2. The data suggest that Que might be beneficial for the prevention and treatment of vascular endothelial injury-related cardiovascular diseases, such as atherosclerosls and thromboembolism diseases.
文摘AIM: To establish the role of vascular endothelial growth factor (VEGF) in the oncogenesis of human gastric carcinoma more directly. METHODS: The expression of VEGF and its receptor kinase-domain insert containing receptor (KDR) in human gastric cancer tissue were observed by immunohistochemical staining. VEGF levels were manipulated in human gastric cancer cell using eukaryotic expression constructs designed to express the complete VEGF(165) complimentary DNA in either the sense or antisense orientation. The biological changes of the cells were observed in which VEGF was up-regulated or down-regulated. RESULTS: VEGF-positive rate was 50%, and VEGF was mainly localized in the cytoplasm and membrane of the tumor cells, while KDR was mainly located in the membrane of vascular endothelial cells in gastric cancer tissues and peri-cancerous tissue. In 2 cases of 50 specimens, the gastric cancer cells expressed KDR, localized in both the cytoplasm and membrane. Introduction of VEGF(165) antisense into human gastric cancer cells (SGC-7901, immunofluorescence intensity, 31.6%)) resulted in a significant reduction in VEGF-specific messenger RNA and total and cell surface VEGF protein (immunofluorescence intensity, 8.9%) (P【0.05). Conversely, stable integration of VEGF(165) in the sense orientation resulted in an increase in cellular and cell surface VEGF (immunofluorescence intensity, 75.4%) (P【0.05). Lowered VEGF levels were associated with a marked decrease in the growth of nude mouse xenografted tumor (at 33 days postimplantation, tumor volume: 345.40 +/- 136.31 mm3)(P【0.05 vs control SGC-7901 group: 1534.40 +/- 362.88 mm3), whereas up-regulation of VEGF resulted in increased xenografted tumor size (at 33 days postimplantation, tumor volume: 2350.50 +/- 637.70 mm3) (P【0.05 vs control SGC-7901 group). CONCLUSION: This study provides direct evidence that VEGF plays an important role in the oncogenesis of human gastric cancer.
文摘AIM: To construct a stable transfectant of human liver carcinoma cell line SMMC7721 that could secret human endostatin and to explore the effect of human endostatin expressed by the transfectant on endothelial cell proliferation. METHODS: Recombinant retroviral plasmid pLncx-Endo containing the cDNA for human endostatin gene together with rat albumin signal peptide was engineered and transferred into SMMC7721 cell by lipofectamine. After selection with G418, endostatin-transfected SMMC7721 cells were chosen and expanded. Immunohistochemical staining and Western blot were used to detect the expression of human endostatin in transfected SMMC7721 cells and its medium. The conditioned medium of endostatin-transfected and control SMMC7721 cells were collected to cultivate with human umbilical vein endothelial cells for 72 hours. The inhibitory effect of endostatin, expressed by transfected SMMC7721 cells, on endothelial proliferation in vitro was observed by using MTT assay. RESULTS: A 550 bp specific fragment of endostatin gene was detected from the PCR product of endostatin-transfected SMMC7721 cells. Immunohistochemistry and Western blot analysis confirmed the expression and secretion of foreign human endostatin protein by endostatin-transfected SMMC7721 cells. In vitro endothelial proliferation assay showed that 72 hours after cultivation with human umbilical vein endothelial cells, the optical density (OD) in group using the medium from endostatin-transfected SMMC7721 cells was 0.51 +/- 0.06, lower than that from RPMI 1640 group (0.98 +/- 0.09) or that from control plasmid pLncx-transfected SMMC7721 cells (0.88 +/- 0.11). The inhibitory rate for medium from endostatin-transfected SMMC7721 cells was 48%, significantly higher than that from empty plasmid pLncx-transfected SMMC7721 cells (10.2%, P【0.01). CONCLUSION: Human endostatin can be stably expressed by SMMC7721 cell transferred with human endostatin gene and its product can significantly inhibit the proliferation of human umbilical vein endothelial cell in vitro.
基金Supported by the National Natural Science Foundation of China, No. 39870796
文摘INTRODUCTIONMultiple organ dysfunction syndrome (MODS) isthought to be a frequent consequence of sepsis[1-3].Despite substantial advances in our knowledge and understanding of the basic pathophysiologic mechanisms[4-7], in critically ill patients infections and sepsis are still associated with a high mortality[8,9].
文摘OBJECTIVES: To investigate the effects of glucose and free fatty acids (FFAs) on the proliferation and cell cycle of human vascular endothelial cells in vitro, and to examine whether the combined presence of elevated FFAs and glucose may cross-amplify their individual injurious effects. METHODS: Cultured human vascular endothelial cells (ECV304) were incubated with various concentrations of glucose and/or FFAs (palmitate and/or oleate) for 24 - 96 h. Morphologic alterations were observed using a phase contrast microscope and an electron microscope. Inhibition of proliferation was measured by a colorimetric 3-[4, 5-dimethyl thiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell viability was determined using trypan blue exclusion. Distribution of cells along phases of the cell cycle was analyzed by flow cytometry. RESULTS: Glucose 15 or 30 mmol/L, palmitate (PA) 0.25 or 0.5 mmol/L, and oleate (OA) 0.5 mmol/L inhibited proliferation and accelerated death of endothelial cells in a dose-and-time-dependent manner. After treatment with elevated glucose and/or FFAs, the G(0)/G(1) phase cells increased, whereas S phase cells decreased, suggesting that high glucose and/or FFAs mainly arrested endothelial cells at G(0)/G(1) phase. The inhibitive rates of proliferation and population of dead cells in endothelial cells incubated with glucose plus FFAs (glucose 30 mmol/L + PA 0.25 mmol/L, glucose 30 mmol/L + OA 0.5 mmol/L, glucose 30 mmol/L + PA 0.25 mmol/L + OA 0.5 mmol/L) increased more markedly than those treated with high glucose or FFAs (PA and/or OA) alone. CONCLUSION: Both high ambient glucose and FFAs can inhibit proliferation and accelerate death of endothelial cells in vitro. These changes were cross-amplified in the combined presence of high levels of glucose and FFAs.