Aiming at a comprehensive assessment of energy-saving retrofitting effect on existing buildings,a calculation method is developed to adjust energy-saving quantity in standard condition for comparison under the same co...Aiming at a comprehensive assessment of energy-saving retrofitting effect on existing buildings,a calculation method is developed to adjust energy-saving quantity in standard condition for comparison under the same conditions. A mathematical model,method theory and calculation steps are given. Error analysis results show that this method can be applied accurately to practical engineering projects. In a case study of energy-saving quantity assessment before and after retrofitting on a certain hospital in Shanghai,with energy simulation software TRNSYS,detailed application of this method is introduced and analyzed. The method is applied to the case of energy-saving quantity assessment to a hospital in Shanghai before and after retrofitting with the energy simulation software TRNSYS.展开更多
Two estimaton methods are used to calculate the theoretical reservoir potential of China's oceanic thermal energy. One is based on the measured temperature difference between the surface water and the deep water, ...Two estimaton methods are used to calculate the theoretical reservoir potential of China's oceanic thermal energy. One is based on the measured temperature difference between the surface water and the deep water, the other on the net radiation energy income from solar insolation either measured or deduced. The results from these two methods are compared and examined. Then, the maximum amount of the exploitable thermal energy is calculated based on the assumption of a Carnot cycle efficiency. In the process of estimation, such factors as water depth, seasonal water temperature variation and geographic location have been taken into account.The theoretical reservoir capacity and the exploitable quantity of the thermal energy of China's four seas are thus estimated separately.展开更多
区域综合能源系统(regional integrated energy system,RIES)的最优能流计算是求解RIES的设备配置、优化调度、故障分析等问题的基础。考虑供冷/热和供气管道传输能量的动态特性,建立RIES动态最优能流计算模型,其中基于特征线法获得了供...区域综合能源系统(regional integrated energy system,RIES)的最优能流计算是求解RIES的设备配置、优化调度、故障分析等问题的基础。考虑供冷/热和供气管道传输能量的动态特性,建立RIES动态最优能流计算模型,其中基于特征线法获得了供冷/热管道和供气管道动态偏微分方程的代数解析解。针对基于供冷/热系统质–量调节模式下管道能量传输时滞变量造成RIES的动态能流计算模型难以求解的问题,提出采用分段插值法获得供冷/热管道两端节点温度之间关系的近似表达式并加入动态最优能流计算模型中。此外,针对优化模型中供冷/热系统的流量与温度相乘的双线性项,提出一种能够缩紧松弛间隙的分段凸包络松弛方法将原混合整数非线性优化模型转化为混合整数二次约束规划模型,能够在保证计算精度的同时实现高效求解。最后以某个RIES算例进行分析,验证了所提方法的计算准确性和高效性,并与常用的质调节模式相比,表明在供冷/热系统质–量调节模式下能找到经济性更优的RIES运行点。展开更多
In this study, a traffic energy system model is developed to optimize the traffic system cost of Urumqi, considering energy consumption, pollution emission and travel time. Meanwhile, scenario analysis method is propo...In this study, a traffic energy system model is developed to optimize the traffic system cost of Urumqi, considering energy consumption, pollution emission and travel time. Meanwhile, scenario analysis method is proposed to solve the problem of the extreme weather of traffic, and three scenarios (i.e. 10%, 20% and 30%) of reductions of traffic flow quantity and pollutant emission are examined. The results demonstrate that the medium-type coach will be the promising selection under different scenarios especially in the extreme conditions and the traffic flow reduction scenarios are not the better option for the decision owing to the same cost under the different reduction levels. Moreover, encouraging the medium-type coach traveling and restricting the small vehicle driving would be attractive alternatives for the extreme situation. The proposed model would provide reasonable references for decision makers.展开更多
基金Project(2006BAJ03A10) supported by the National Key Technologies R & D Program of China
文摘Aiming at a comprehensive assessment of energy-saving retrofitting effect on existing buildings,a calculation method is developed to adjust energy-saving quantity in standard condition for comparison under the same conditions. A mathematical model,method theory and calculation steps are given. Error analysis results show that this method can be applied accurately to practical engineering projects. In a case study of energy-saving quantity assessment before and after retrofitting on a certain hospital in Shanghai,with energy simulation software TRNSYS,detailed application of this method is introduced and analyzed. The method is applied to the case of energy-saving quantity assessment to a hospital in Shanghai before and after retrofitting with the energy simulation software TRNSYS.
文摘Two estimaton methods are used to calculate the theoretical reservoir potential of China's oceanic thermal energy. One is based on the measured temperature difference between the surface water and the deep water, the other on the net radiation energy income from solar insolation either measured or deduced. The results from these two methods are compared and examined. Then, the maximum amount of the exploitable thermal energy is calculated based on the assumption of a Carnot cycle efficiency. In the process of estimation, such factors as water depth, seasonal water temperature variation and geographic location have been taken into account.The theoretical reservoir capacity and the exploitable quantity of the thermal energy of China's four seas are thus estimated separately.
文摘区域综合能源系统(regional integrated energy system,RIES)的最优能流计算是求解RIES的设备配置、优化调度、故障分析等问题的基础。考虑供冷/热和供气管道传输能量的动态特性,建立RIES动态最优能流计算模型,其中基于特征线法获得了供冷/热管道和供气管道动态偏微分方程的代数解析解。针对基于供冷/热系统质–量调节模式下管道能量传输时滞变量造成RIES的动态能流计算模型难以求解的问题,提出采用分段插值法获得供冷/热管道两端节点温度之间关系的近似表达式并加入动态最优能流计算模型中。此外,针对优化模型中供冷/热系统的流量与温度相乘的双线性项,提出一种能够缩紧松弛间隙的分段凸包络松弛方法将原混合整数非线性优化模型转化为混合整数二次约束规划模型,能够在保证计算精度的同时实现高效求解。最后以某个RIES算例进行分析,验证了所提方法的计算准确性和高效性,并与常用的质调节模式相比,表明在供冷/热系统质–量调节模式下能找到经济性更优的RIES运行点。
文摘In this study, a traffic energy system model is developed to optimize the traffic system cost of Urumqi, considering energy consumption, pollution emission and travel time. Meanwhile, scenario analysis method is proposed to solve the problem of the extreme weather of traffic, and three scenarios (i.e. 10%, 20% and 30%) of reductions of traffic flow quantity and pollutant emission are examined. The results demonstrate that the medium-type coach will be the promising selection under different scenarios especially in the extreme conditions and the traffic flow reduction scenarios are not the better option for the decision owing to the same cost under the different reduction levels. Moreover, encouraging the medium-type coach traveling and restricting the small vehicle driving would be attractive alternatives for the extreme situation. The proposed model would provide reasonable references for decision makers.