期刊文献+
共找到5,344篇文章
< 1 2 250 >
每页显示 20 50 100
Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading
1
作者 Jiajian Li Shuai Cao Erol Yilmaz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期650-664,共15页
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su... Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill. 展开更多
关键词 cement-based tailings fiber-reinforced backfills FRACTURE energy absorption impact loading
下载PDF
The effect of Ti and Zr content on the structure,mechanics and energy-release characteristics of Ti—Zr—Ta alloys
2
作者 Jia-yu Meng Jing-zhi He +4 位作者 Bin Zhang Jin Chen Shun Li Dun Niu Yu Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期343-350,共8页
Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-elem... Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-element Ti-Zr-Ta alloys with good casting performance were studied.The microstructure of the Ti_(x)ZrTa alloys gradually change from BCC+HCP to single BCC structure with the increase of Ti.While the Ti_(2)Zr_(y)Ta alloys was still uniform and single BCC structure with the increase of Zr.The evolution of microstructure and composition then greatly affect the mechanical properties and energy-release characteristics of Ti-Zr-Ta alloys.The synergistic effect of dual phase structure increases the fracture strain of Ti_(x)ZrTa(x=0.2,0.5)with the Ti content decreases,while the fracture strain of Ti_(x)ZrTa(x=2.0,3.0,4.0)gradually increase with the Ti content increases caused by the annihilation of the obstacles for dislocation movement.And as Zr content increases,the fracture strain of Ti_(2)Zr_(y)Ta alloys decrease,then the oxidation reaction rate and fragmentation degree gradually increase.The higher oxidation rate and the lager exposed oxidation area jointly leads the higher releasing energy efficiency of Ti_(x)ZrTa alloys with low Ti content and Ti_(2)Zr_(y)Ta alloys with high Zr content. 展开更多
关键词 Energetic structural materials Ti-Zr-Ta Multi-element alloy energy release characteristics
下载PDF
Assessing the energy release characteristics during the middle detonation reaction stage of aluminized explosives
3
作者 Kun Yang Lang Chen +3 位作者 Danyang Liu Bin Zhang Jianying Lu Junying Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期270-277,共8页
Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows sig... Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows significant differences.However,at present,there are few effective methods for evaluating the energy release characteristics of the middle reaction stage of such explosives,which can have a duration of tens to hundreds of microseconds.The present work demonstrates an approach to assessing the midstage of an aluminized explosive detonation based on a water push test employing a high degree of confinement.In this method,the explosive is contained in a steel cylinder having one end closed that is installed at the bottom of a transparent water tank.Upon detonation,the gaseous products expand in one direction while forcing water ahead of them.The resulting underwater shock wave and the interface between the gas phase products and the water are tracked using an ultra-high-speed framing and streak camera.The shock wave velocity in water and the expansion work performed by the gaseous detonation products were calculated to assess the energy release characteristics of aluminized explosives such as CL-20 and RDX in the middle stage of the detonation reaction.During the middle stage of the detonation process of these aluminized explosives,the aluminum reaction reduced the attenuation of shock waves and increased the work performed by gas phase products.A higher aluminum content increased the energy output while the presence of oxidants slowed the energy release rate.This work demonstrates an effective means of evaluating the performance of aluminized explosives. 展开更多
关键词 Aluminized explosive Non-ideal detonation Water push test energy release
下载PDF
Impact response and energy absorption of metallic buffer with entangled wire mesh damper
4
作者 Chao Zheng Jun Wu +1 位作者 Mangong Zhang Xin Xue 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期137-150,共14页
An innovative metallic buffer consisting of series-connected hat-shaped entangled wire mesh damper(EWMD)and parallel springs are proposed in this work to enhance the reliability of engineering equipment.The impact res... An innovative metallic buffer consisting of series-connected hat-shaped entangled wire mesh damper(EWMD)and parallel springs are proposed in this work to enhance the reliability of engineering equipment.The impact response and the energy dissipation mechanism of hat-shaped EWMD under different quasi-static compression deformations(2-7 mm)and impact heights(100-200 mm)are investigated using experimental and numerical methods.The results demonstrate distinct stages in the quasi-static mechanical characteristics of hat-shaped EWMD,including stiffness softening,negative stiffness,and stiffness hardening.The loss factor gradually increases with increasing compression deformation before entering the stiffness hardening stage.Under impact loads,the hat-shaped EWMD exhibits optimal impact energy absorption when it enters the negative stiffness stage(150 mm),resulting in the best impact isolation effect of metallic buffer.However,the impact energy absorption significantly decreases when hat-shaped EWMD enters the stiffness hardening stage.Interestingly,quasi-static compression analysis after experiencing different impact loads reveals the disappearance of the negative stiffness phenomenon.Moreover,with increasing impact loads,the stiffness hardening point progressively shifts to an earlier stage. 展开更多
关键词 Metallic buffer Hat-shaped EWMD Drop impact energy absorption characteristics Mechanical behavior
下载PDF
Compressive property and energy absorption characteristic of interconnected porous Mg-Zn-Y alloys with adjusting Y addition
5
作者 J.A.Liu S.J.Liu +3 位作者 B.Wang W.B.Sun X.J.Liu Z.W.Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期171-185,共15页
In this study,interconnected porous Mg-2Zn-xY alloys with different phase compositions were prepared by various Y additions(x=0.4,3,and 6 wt.%)to adjust the compressive properties and energy absorption characteristics... In this study,interconnected porous Mg-2Zn-xY alloys with different phase compositions were prepared by various Y additions(x=0.4,3,and 6 wt.%)to adjust the compressive properties and energy absorption characteristics.Several characterization methods were then applied to identify the microstructure of the porous Mg-Zn-Y and describe the details of the second phase.Compressive tests were performed at room temperature(RT),200℃,and 300℃to study the impact of the Y addition and testing temperature on the compressive properties of the porous Mg-Zn-Y.The experimental results showed that a high Y content promotes a microstructure refinement and increases the volume fraction of the second phase.When the Y content increases,different Mg-Zn-Y ternary phases appear:I-phase(Mg_(3)Zn_(6)Y),W-phase(Mg_(3)Zn_(3)Y_(2)),and LPSO phase(Mg_(12)ZnY).When the Y content ranges between 0.4%and 6%,the compressive strength increases from 6.30MPa to 9.23 MPa,and the energy absorption capacity increases from 7.33 MJ/m^(3)to 10.97 MJ/m^(3)at RT,which is mainly attributed to the phase composition and volume fraction of the second phase.However,the average energy absorption efficiency is independent of the Y content.In addition,the compressive deformation behaviors of the porous Mg-Zn-Y are altered by the testing temperature.The compressive strength and energy absorption capacity of the porous Mg-Zn-Y decrease due to the softening effect of the high temperature on the struts.The deformation behaviors at different temperatures are finally observed to reflect the failure mechanisms of the struts. 展开更多
关键词 Porous magnesium Rare earth elements Microstructure Compressive behavior energy absorption characteristic
下载PDF
Influence of manufacturing process-induced geometrical defects on the energy absorption capacity of polymer lattice structures
6
作者 Alexandre Riot Enrico Panettieri +1 位作者 Antonio Cosculluela Marco Montemurro 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期47-59,共13页
Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r... Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for. 展开更多
关键词 Lattice structures Architected cellular materials Dynamic simulation energy absorption Geometrical imperfection Additive manufacturing
下载PDF
Energy status regulated umami compound metabolism in harvested shiitake mushrooms(Lentinus edodes)with spores triggered to release 被引量:1
7
作者 Rongrong Xia Xuemei Zhao +5 位作者 Guang Xin Libin Sun Heran Xu Zhenshan Hou Yunting Li Yafei Wang 《Food Science and Human Wellness》 SCIE CSCD 2023年第1期303-311,共9页
The molecular mechanisms of energy status related to the umami taste of postharvest shiitake mushrooms during spore release remain poorly understood.In this study,the variations of energy status and umami taste of mus... The molecular mechanisms of energy status related to the umami taste of postharvest shiitake mushrooms during spore release remain poorly understood.In this study,the variations of energy status and umami taste of mushrooms were measured at 25℃.At 24 h storage,slight spore prints of mushrooms were first pictured,respiration peaked.Significant ATP decrease and ADP increase were also observed as the initiation of postharvest senescence(P<0.05).Meanwhile,the activities of phosphohexose isomerase,succinate dehydrogenase,glucose-6-phosphate dehydrogenase and cytochrome c oxidase and the contents of umami nucleotides and amino acids were maintained at higher levels in mushrooms with spore release.Notably,the equivalent umami concentration(EUC)was strongly correlated with energy levels(R=0.80).Fifteen related gene expression levels in the energy metabolism pathway were downregulated.LecpdP1 and LeAK were significantly expressed in the conversion of ATP into AMP and played key roles in connecting the energy state and umami level.These results provided valuable insights on the umami taste associated with energy metabolism mechanism during postharvest mushroom spore release. 展开更多
关键词 Shiitake mushrooms Spore release energy metabolism Umami taste TRANSCRIPTOME
下载PDF
Monitoring the in vivo siRNA release from lipid nanoparticles based on the fluorescence resonance energy transfer principle 被引量:1
8
作者 Lei Sun Jinfang Zhang +11 位作者 Jing-e Zhou JingWang Zhehao Wang Shenggen Luo Yeying Wang Shulei Zhu Fan Yang Jie Tang Wei Lu Yiting Wang Lei Yu Zhiqiang Yan 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第1期72-85,共14页
The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization.However,the in vivo distribution and release of siRNA still cannot be effect... The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization.However,the in vivo distribution and release of siRNA still cannot be effectively monitored.In this study,based on the fluorescence resonance energy transfer(FRET)principle,a fluorescence dye Cy5-modified survivin siRNA was conjugated to nanogolds(Au-DR-siRNA),which were then wrapped with lipid nanoparticles(LNPs)for monitoring the release behaviour of siRNA in vivo.The results showed that once Au-DR-siRNA was released from the LNPs and cleaved by the Dicer enzyme to produce free siRNA in cells,the fluorescence of Cy5 would change from quenched state to activated state,showing the location and time of siRNA release.Besides,the LNPs showed a significant antitumor effect by silencing the survivin gene and a CT imaging function superior to iohexol by nanogolds.Therefore,this work provided not only an effective method for monitoring the pharmacokinetic behaviour of LNP-based siRNA,but also a siRNA delivery system for treating and diagnosing tumors. 展开更多
关键词 Survivin siRNA Lipid nanoparticles In vivo release Nanogolds Fluorescence resonance energy transfer
下载PDF
Dynamic crushing behaviors and enhanced energy absorption of bio-inspired hierarchical honeycombs with different topologies 被引量:1
9
作者 Xin-chun Zhang Nan-nan Liu +3 位作者 Chao-chao An He-xiang Wu Na Li Ke-ming Hao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期99-111,共13页
In order to pursue good crushing load uniformity and enchance energy absorption efficiency of conventional honeycombs, a kind of bio-inspired hierarchical honeycomb model is proposed by mimicking the arched crab shell... In order to pursue good crushing load uniformity and enchance energy absorption efficiency of conventional honeycombs, a kind of bio-inspired hierarchical honeycomb model is proposed by mimicking the arched crab shell structures. Three bio-inspired hierarchical honeycombs(BHHs) with different topologies are designed by replacing each vertex of square honeycombs with smaller arc-shaped structures. The effects of hierarchical topologies and multi-material layout on in-plane dynamic crushings and absorbed-energy capacities of the BHHs are explored based on the explicit finite element(FE) analysis.Different deformation modes can be observed from the BHHs, which mainly depend upon hierarchical topologies and impact velocities. According to energy efficiency method and one-dimensional(1D) shock theory, calculation formulas of densification strains and plateau stresses for the BHHs are derived to characterize the dynamic bearing capacity, which is consistent well with FE results. Compared with conventional honeycombs, the crushing load efficiency and energy absorption capacity of the BHHs can be improved by changing the proper hierarchical topology and multi-material layout. These researches will provide theoretical guidance for innovative design and dynamic response performance controllability of honeycombs. 展开更多
关键词 Bio-inspired honeycombs Crushing load uniformity energy absorption Hierarchical topologies Finite element analysis
下载PDF
Geometric Accuracy and Energy Absorption Characteristics of 3D Printed Continuous Ramie Fiber Reinforced Thin-Walled Composite Structures
10
作者 Kui Wang Hao Lin +5 位作者 Antoine Le Duigou Ruijun Cai Yangyu Huang Ping Cheng Honghao Zhang Yong Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期147-158,共12页
The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In additi... The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In addition,additive manufacturing technology provides a favorable process foundation for its realization.In this study,the printability and energy absorption properties of 3D printed continuous fiber reinforced thin-walled structures with different configurations were investigated.The results suggested that a low printing speed and a proper layer thickness would mitigate the printing defects within the structures.The printing geometry accuracy of the structures could be further improved by rounding the sharp corners with appropriate radii.This study successfully fabricated structures with vari-ous configurations characterized by high geometric accuracy through printing parameters optimization and path smoothing.Moreover,the compressive property and energy absorption characteristics of the structures under quasi-static axial compression were evaluated and compared.It was found that all studied thin-walled structures exhibited progressive folding deformation patterns during compression.In particular,energy absorption process was achieved through the combined damage modes of plastic deformation,fiber pullout and delamination.Furthermore,the com-parison results showed that the hexagonal structure exhibited the best energy absorption performance.The study revealed the structure-mechanical property relationship of 3D printed continuous fiber reinforced composite thin-walled structures through the analysis of multiscale failure characteristics and load response,which is valuable for broadening their applications. 展开更多
关键词 Additive manufacturing Continuous fiber BIOCOMPOSITE Thin-walled structure Geometric accuracy energy absorption
下载PDF
Integrating thermal energy storage and microwave absorption in phase change material-encapsulated core-sheath MoS_(2)@CNTs
11
作者 Panpan Liu Yang Li +6 位作者 Zhaodi Tang Junjun Lv Piao Cheng Xuemei Diao Yu Jiang Xiao Chen Ge Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期41-49,共9页
Developing advanced nanocomposite integrating solar-driven thermal energy storage and thermal management functional microwave absorption can facilitate the cutting-edge application of phase change materials(PCMs).To c... Developing advanced nanocomposite integrating solar-driven thermal energy storage and thermal management functional microwave absorption can facilitate the cutting-edge application of phase change materials(PCMs).To conquer this goal,herein,two-dimensional MoS_(2) nanosheets are grown in situ on the surface of one-dimensional CNTs to prepare core-sheath MoS_(2)@CNTs for the encapsulation of paraffin wax(PW).Benefiting from the synergistic enhancement photothermal effect of MoS_(2) and CNTs,MoS_(2)@CNTs is capable of efficiently trapping photons and quickly transporting phonons,thus yielding a high solar-thermal energy conversion and storage efficiency of 94.97%.Meanwhile,PW/MoS_(2)@CNTs composite PCMs exhibit a high phase change enthalpy of 101.60 J/g and excellent lo ng-term thermal storage durability after undergoing multiple heating-cooling cycles.More attractively,PW/MoS_(2)@CNTs composite PCMs realize thermal management functional microwave absorption in heat-related electronic application scenarios,which is superior to the single microwave absorption of traditional materials.The minimum reflection loss(RL) for PW/MoS_(2)@CNTs is-28 dB at 12.91 GHz with a 2.0 mm thickness.This functional integration design provides some insightful references on developing advanced microwave absorbing composite PCMs,holding great potential towards high-efficiency solar energy utilization and thermally managed microwave absorption fields. 展开更多
关键词 Phase change materials Core-sheath MoS_(2)@CNTs Solar-thermal energy conversion Thermal energy storage Microwave absorption
下载PDF
Energy Transfer Dynamics between Carbon Quantum Dots and Molybdenum Disulfide Revealed by Transient Absorption Spectroscopy
12
作者 Ruixiang Wu Xin Liu +4 位作者 Xiaoshuai Wang Jingjing Luo Bin Li Shengzhi Wang Xiangyang Miao 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2023年第5期503-508,I0001,共7页
Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-ti... Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-tion spectroscopies to study the energy transfer dynamics between CQDs and molybdenum disulfide(MoS_(2)).Transient absorption plots showed photoinduced absorption and stimulated emission features,which involved the intrinsic and defect states of CQDs.Adding MoS_(2)to CQDs solution,the lowest unoccupied molecular orbital of CQDs transferred energy to MoS_(2),which quenched the intrinsic emission at 390 nm.With addition of MoS_(2),CQD-MoS_(2)composites quenched defect emission at 490 nm and upward absorption,which originated from another energy transfer from the defect state.Two energy transfer paths between CQDs and MoS_(2)were efficiently manipulated by changing the concentration of MoS_(2),which laid a foundation for improving device performance. 展开更多
关键词 energy transfer Transient absorption spectroscopy Carbon quantum dot Molybdenum disulfide
下载PDF
Mechanical Properties and Energy Absorption of Integrated AlSi10Mg Shell Structures with BCC Lattice Infill
13
作者 Yingchun Bai Jiayu Gao +1 位作者 Chengxiang Huang Yue Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期159-171,共13页
Shell-infill structures comprise an exterior solid shell and an interior lattice infill,whose closed features yield superior comprehensive mechanical performance and light weight.Additive manufacturing(AM)can ensure t... Shell-infill structures comprise an exterior solid shell and an interior lattice infill,whose closed features yield superior comprehensive mechanical performance and light weight.Additive manufacturing(AM)can ensure the fabrica-tion of complex structures.Although the mechanical behaviors of lattice structures have been extensively studied,the corresponding mechanical performances of integrated-manufactured shell structures with lattice infills should be systematically investigated due to the coupling effect of the exterior shell and lattice infill.This study investigated the mechanical properties and energy absorption of AlSi10Mg shell structures with a body-centered cubic lattice infill fabricated by AM.Quasi-static compressive experiments and corresponding finite element analysis were conducted to investigate the mechanical behavior.In addition,two different finite element modeling methods were compared to determine the appropriate modeling strategy in terms of deformation behavior.A study of different parameters,including lattice diameters and shell thicknesses,was conducted to identify their effect on mechanical performance.The results demonstrate the mechanical advantages of shell-infill structures,in which the exterior shell strengthens the lattice infill by up to 2.3 times in terms of the effective Young’s modulus.Increasing the infill strut diameter can improve the specific energy absorption by up to 1.6 times. 展开更多
关键词 Shell-infill structure Body center cubic(BCC) Additive manufacturing Compression properties energy absorption
下载PDF
Energy absorption characteristics of novel high-strength and hightoughness steels used for rock support
14
作者 Ding Wang Manchao He +3 位作者 Liangjiu Jia Xiaoming Sun Min Xia Xuchun Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1441-1456,共16页
Nowadays,the development of novel metallic materials for rock support have attracted research interests since they can significantly improve the deformation and energy absorption capacities of rock bolts.Although prev... Nowadays,the development of novel metallic materials for rock support have attracted research interests since they can significantly improve the deformation and energy absorption capacities of rock bolts.Although previous studies proved the importance and mechanical advantages of utilizing high-strength and high-toughness(HSHT)steels in rock support,there is no systematic analysis to reveal the essential energy absorption parameter and the guidelines for further development of metallic rock support materials.This paper analyzes the energy absorption characteristics of novel HSHT steels(negative Poisson’s ratio(NPR)and twinning-induced plasticity(TWIP)steels)in comparison with conventional rock support materials.A physically based crystal plasticity(CP)model was set up and calibrated to study the effect of strain hardening rate(SHR).Meanwhile,the roles of underlying physical mechanisms,i.e.the dislocation density and twin volume fraction,were studied.The results show that the improvement of energy absorption density(EAD)is essential for further development of rock support materials,besides the increase of energy absorption rate(EAR)for previous development of conventional rock support materials.The increase of EAD requires increases of both strength and deformation capacity of materials.For HSHT steels,the decrease of SHR has a positive effect on the improvement of EAD.In addition,the increase of EAD is followed by the increase of twin volume fraction and the decrease of plastic Poisson’s ratio which can promote deformation plasticity of materials.Meanwhile,the increase of EAR is correlated with the accumulation of dislocation density,which can increase the strength of materials.This paper provides the theoretical basis and guidelines for developing rock support materials in deep underground engineering and other related fields. 展开更多
关键词 Rock support Steel energy absorption Strain hardening rate(SHR) Crystal plasticity(CP)
下载PDF
A Footpad Structure with Reusable Energy Absorption Capability for Deep Space Exploration Lander:Design and Analysis
15
作者 Weiyuan Dou Xiaohang Qiu +2 位作者 Zhiwei Xiong Yanzhao Guo Lele Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期257-270,共14页
The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characte... The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process.The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation.Nevertheless,its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed,rendering it unusable for reusable landers in the future.This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys(SMA).The topological configuration of the energy absorbing structure is derived using an equivalent static load method(ESL),and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed.To verify the accuracy of the numerical modelling,a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results.Moreover,the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations.The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain,resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%. 展开更多
关键词 Deep space exploration lander Footpad Shape memory alloy(SMA) Reusable energy absorption structure Design method
下载PDF
Effects of Sustained-Release Calcium Hydroxide and Sustained-Release Hydrochloric Acid on Nutrient Di-gestion and Absorption of Rabbits
16
作者 Chen Lingyu Zhuge Liuying +2 位作者 Lin Zijun Tong Zhangfa Wei Tengyou 《Animal Husbandry and Feed Science》 CAS 2017年第2期67-70,126,共5页
Rabbits with the body weight of (2.0 ± 0.5 ) kg were chosen, to study the effects of sustained-release calcium hydroxide and sustained-release hydro- chloric acid on nutrient digestion and absorption of rabbits... Rabbits with the body weight of (2.0 ± 0.5 ) kg were chosen, to study the effects of sustained-release calcium hydroxide and sustained-release hydro- chloric acid on nutrient digestion and absorption of rabbits. The results showed that sustained-release calcium hydroxide promoted digestion and absorption of nutri- ents, especially calcium and crude protein. The digestibility of calcium and crude protein was increased from 89.8% and 93.8% to 41.0% and 65.2%, respec- tively. Sustained-release hydrochloric acid was adverse to digestion and absorption of nutrients, especially calcium and crude protein. The digestibility of calcium and crude protein were decreased from 55.5% and 84.9% to 28.4% and 68.7%, respectively. The promotion effects of sustained-release hydrochloride on diges- tion lasted for 3 -4 d. Therefore, sustained-release calcium hydroxide promoted digestion and absorption of calcium and protein, while digestion and absorption of fat remained at a high level no matter what the condition was. Consequently, increasing the intake of fat would cause over nutrition. However, taking sustained-re- lease hydrochloric acid would reduce nutrient digestion and absorption. 展开更多
关键词 Sustained-release calcium hydroxide Sustained-release hydrochloric acid NUTRIENTS Digestion and absorption Effect RABBITS
下载PDF
Hybrid reinforced thermoset polymer composite in energy absorption tube application:A review 被引量:7
17
作者 A.B.M.Supian S.M.Sapuan +2 位作者 M.Y.M.Zuhri E.S.Zainudin H.H.Ya 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期291-305,共15页
The custom of hybridization fibre composite in energy absorption tube application has gained the attention of structural crashworthiness in composite material industry. Thus, the approach of this review is to understa... The custom of hybridization fibre composite in energy absorption tube application has gained the attention of structural crashworthiness in composite material industry. Thus, the approach of this review is to understand the effect in hybridization within metal/synthetic fibre composite, synthetic/synthetic fibre composite and nature/synthetic fibre composite as energy absorption tube, which reflects on the energy absorption characteristics and crashworthiness behaviors in previous the study. By way of instance, a wide range of methodology and particular parameter in previous study such as the effect in fibre arrangement, matrix polymer, technique of fabrication, fibre treatment(natural fibre), design in geometry/cross-section and others mechanism of hybrid fibre composite tube are highlighted which to comprehend the capability of the mechanical performance and collapsible behavior as sacrificial structure in high-performance structure applications. Moreover, in the recently studies there have been many of the research regarding structural materials as energy absorption tube has been introduced such as metal/matrix composites, new alloy metals and polymer composites which intended to evaluate the performance of these materials into circumstance in loading and impact characteristic. Therefore, this review article is trying to explore the research articles related to the effect of hybridization fibres and thermoset polymer as reinforcement for energy absorption tube research and expected would provide an information and idea which to expend the knowledge in future study of hybridization effect for energy absorption tube, moreover the development for future potential as new hybrid composite fibre materials from the natural/synthetic fibres reinforced composite material in employing of high-performance energy absorption tube application is still less discover and highlighted. 展开更多
关键词 energy absorption tube HYBRID composites COLLAPSE behavior CRASHWORTHINESS
下载PDF
Assessment of rockburst hazard by quantifying the consequence with plastic strain work and released energy in numerical models 被引量:6
18
作者 F.Wang R.Kaunda 《International Journal of Mining Science and Technology》 EI CSCD 2019年第1期93-97,共5页
Quantifying the rockburst consequence is of critical importance to reduce the hazards with preventative measures in underground mines and deep tunnels. Contours of energy components within a pillar model are plotted a... Quantifying the rockburst consequence is of critical importance to reduce the hazards with preventative measures in underground mines and deep tunnels. Contours of energy components within a pillar model are plotted at different rockmass damage stages, and plastic strain work and released energy are proposed as indicators of rockmass damage consequence. One pillar model under different loading stiffness is simulated to assess indicators of pillar burst and the resulting damages. The results show the rockmass damage under soft loading stiffness has larger magnitude of plastic strain work and released energy than that which is under stiff loading stiffness, indicating the rockburst consequence can be quantified with plastic strain work and released energy in numerical models. With the quantified rockburst consequence,preventative measures can be taken to avoid severe hazards to mine safety. 展开更多
关键词 UNSTABLE ROCK failure ROCK burst energy mechanism Numerical modeling releaseD energy
下载PDF
In-plane crushing behavior and energy absorption design of composite honeycombs 被引量:14
19
作者 H.X.Wu Y.Liu X.C.Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第6期1108-1123,共16页
Theoretical analysis and numerical simulation methods were used to study the in-plane crushing behavior of single-cell structures and regular and composite honeycombs.Square,hexagonal,and circular honeycombs were sele... Theoretical analysis and numerical simulation methods were used to study the in-plane crushing behavior of single-cell structures and regular and composite honeycombs.Square,hexagonal,and circular honeycombs were selected as honeycomb layers to establish composite honeycomb models in the form of composite structures and realize the complementary advantages of honeycombs with type Ⅰ and type Ⅱ structures.The effects of honeycomb layer arrangement,plastic collapse strength,relative density,and crushing velocity on the deformation mode,plateau stress,load uniformity,and energy absorption performance of the composite honeycombs were mainly considered.A semi-empirical formula for plateau stress and energy absorption rate per unit mass for the composite honeycombs was developed.The results showed that the arrangement mode of honeycomb layers is an important factor that affects their mechanical properties.Appropriately selecting the arrangement of honeycomb layers and the proportion of honeycomb layers with different structures in a composite honeycomb can effectively improve its load uniformity and control the magnitude of plateau stress and energy absorption capacity. 展开更多
关键词 COMPOSITE HONEYCOMBS Dynamic CRUSHING Load UNIFORMITY energy absorption FINITE element analysis
下载PDF
Energy Absorption Diagrams of Multi-layer Corrugated Boards 被引量:5
20
作者 王冬梅 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期58-61,共4页
Based on the static compression experiments, the compressive stress-strain curve of multi-layer corrugated boards is simplified into three sections of linear elasticity, sub-buckling going with local collapse and dens... Based on the static compression experiments, the compressive stress-strain curve of multi-layer corrugated boards is simplified into three sections of linear elasticity, sub-buckling going with local collapse and densification. By considering the structure factors of multi-layer corrugated boards, the energy absorption model is obtained and characterized by the structure factors of corrugated cell-wall. The model is standardized by the solid modulus and it is universal for corrugated structures of different basis material. In the liner-elastic section, with the increase of the load, the energy absorption per unit volume of multi-layer corrugated boards gradually increases; in the sub-buckling section going with local collapse, the compression resistance of multi-layer corrugated boards goes on under a nearly constant load, but the energy absorption per unit volume rapidly increases with the increase of the compression strain. It is shown as an ascending curve in the energy absorption diagram. In the densification section, the corrugated sandwich core has no energy absorption capability. A good consistency is achieved between theoretical and experimental energy absorption curves. In designing the cushioning package, the cushioning properties can be evaluated by the theoretical model without more experiments. The suggested method to develop the energy absorption diagram for corrugated boards can be used to characterize the cushioning properties and optimize the structures of corrugated sandwich structures. 展开更多
关键词 multi-layer corrugated boards stress strain curve energy absorption diagram MODELLING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部