An energy effi cient resource allocation scheme in timesharing multiuser system with a hybrid energy harvesting transmitter is studied in this paper. Specially, the operation energy of system is supplied by constant e...An energy effi cient resource allocation scheme in timesharing multiuser system with a hybrid energy harvesting transmitter is studied in this paper. Specially, the operation energy of system is supplied by constant energy and energy harvesting, which harvests energy from external environment. Our goal is to maximize the energy effi ciency of timesharing multiuser systems by considering jointly allocation of transmission time and power control in an off-line manner. The original nonconvex objective function is transformed into convex optimization problem via the fractional programming approach. Then, we solve the convex problem by Lagrange dual decomposition method. Simulation results show that the proposed energy efficient resource allocation scheme has a better performance than the scheme which decomposes optimization problem into two parts(power allocation, time allocation) to solve iteratively.展开更多
Considering that perfect channel state information(CSI) is difficult to obtain in practice,energy efficiency(EE) for distributed antenna systems(DAS) based on imperfect CSI and antennas selection is investigated in Ra...Considering that perfect channel state information(CSI) is difficult to obtain in practice,energy efficiency(EE) for distributed antenna systems(DAS) based on imperfect CSI and antennas selection is investigated in Rayleigh fading channel.A novel EE that is defined as the average transmission rate divided by the total consumed power is introduced.In accordance with this definition,an adaptive power allocation(PA) scheme for DAS is proposed to maximize the EE under the maximum transmit power constraint.The solution of PA in the constrained EE optimization does exist and is unique.A practical iterative algorithm with Newton method is presented to obtain the solution of PA.The proposed scheme includes the one under perfect CSI as a special case,and it only needs large scale and statistical information.As a result,the scheme has low overhead and good robustness.The theoretical EE is also derived for performance evaluation,and simulation result shows the validity of the theoretical analysis.Moreover,EE can be enhanced by decreasing the estimation error and/or path loss exponents.展开更多
In mobile edge computing(MEC),one of the important challenges is how much resources of which mobile edge server(MES)should be allocated to which user equipment(UE).The existing resource allocation schemes only conside...In mobile edge computing(MEC),one of the important challenges is how much resources of which mobile edge server(MES)should be allocated to which user equipment(UE).The existing resource allocation schemes only consider CPU as the requested resource and assume utility for MESs as either a random variable or dependent on the requested CPU only.This paper presents a novel comprehensive utility function for resource allocation in MEC.The utility function considers the heterogeneous nature of applications that a UE offloads to MES.The proposed utility function considers all important parameters,including CPU,RAM,hard disk space,required time,and distance,to calculate a more realistic utility value for MESs.Moreover,we improve upon some general algorithms,used for resource allocation in MEC and cloud computing,by considering our proposed utility function.We name the improved versions of these resource allocation schemes as comprehensive resource allocation schemes.The UE requests are modeled to represent the amount of resources requested by the UE as well as the time for which the UE has requested these resources.The utility function depends upon the UE requests and the distance between UEs and MES,and serves as a realistic means of comparison between different types of UE requests.Choosing(or selecting)an optimal MES with the optimal amount of resources to be allocated to each UE request is a challenging task.We show that MES resource allocation is sub-optimal if CPU is the only resource considered.By taking into account the other resources,i.e.,RAM,disk space,request time,and distance in the utility function,we demonstrate improvement in the resource allocation algorithms in terms of service rate,utility,and MES energy consumption.展开更多
基金supported in part by the National Natural Science Foundation of China(61471115)in part by the 2016 Science and Technology Joint Research and Innovation Foundation of Jiangsu Province(BY2016076-13)
文摘An energy effi cient resource allocation scheme in timesharing multiuser system with a hybrid energy harvesting transmitter is studied in this paper. Specially, the operation energy of system is supplied by constant energy and energy harvesting, which harvests energy from external environment. Our goal is to maximize the energy effi ciency of timesharing multiuser systems by considering jointly allocation of transmission time and power control in an off-line manner. The original nonconvex objective function is transformed into convex optimization problem via the fractional programming approach. Then, we solve the convex problem by Lagrange dual decomposition method. Simulation results show that the proposed energy efficient resource allocation scheme has a better performance than the scheme which decomposes optimization problem into two parts(power allocation, time allocation) to solve iteratively.
基金partially supported by the National Natural Science Foundation of China(61571225,61271255,61232016,U1405254)the Open Foundation of Jiangsu Engineering Center of Network Monitoring(Nanjing University of Information Science and Technology)(Grant No.KJR1509)+2 种基金the PAPD fundthe CICAEET fundShenzhen Strategic Emerging Industry Development Funds(JSGG20150331160845693)
文摘Considering that perfect channel state information(CSI) is difficult to obtain in practice,energy efficiency(EE) for distributed antenna systems(DAS) based on imperfect CSI and antennas selection is investigated in Rayleigh fading channel.A novel EE that is defined as the average transmission rate divided by the total consumed power is introduced.In accordance with this definition,an adaptive power allocation(PA) scheme for DAS is proposed to maximize the EE under the maximum transmit power constraint.The solution of PA in the constrained EE optimization does exist and is unique.A practical iterative algorithm with Newton method is presented to obtain the solution of PA.The proposed scheme includes the one under perfect CSI as a special case,and it only needs large scale and statistical information.As a result,the scheme has low overhead and good robustness.The theoretical EE is also derived for performance evaluation,and simulation result shows the validity of the theoretical analysis.Moreover,EE can be enhanced by decreasing the estimation error and/or path loss exponents.
基金National Research Foundation of Korea-Grant funded by the Korean Government(Ministry of Science and ICT)-NRF-2020R1AB5B02002478.
文摘In mobile edge computing(MEC),one of the important challenges is how much resources of which mobile edge server(MES)should be allocated to which user equipment(UE).The existing resource allocation schemes only consider CPU as the requested resource and assume utility for MESs as either a random variable or dependent on the requested CPU only.This paper presents a novel comprehensive utility function for resource allocation in MEC.The utility function considers the heterogeneous nature of applications that a UE offloads to MES.The proposed utility function considers all important parameters,including CPU,RAM,hard disk space,required time,and distance,to calculate a more realistic utility value for MESs.Moreover,we improve upon some general algorithms,used for resource allocation in MEC and cloud computing,by considering our proposed utility function.We name the improved versions of these resource allocation schemes as comprehensive resource allocation schemes.The UE requests are modeled to represent the amount of resources requested by the UE as well as the time for which the UE has requested these resources.The utility function depends upon the UE requests and the distance between UEs and MES,and serves as a realistic means of comparison between different types of UE requests.Choosing(or selecting)an optimal MES with the optimal amount of resources to be allocated to each UE request is a challenging task.We show that MES resource allocation is sub-optimal if CPU is the only resource considered.By taking into account the other resources,i.e.,RAM,disk space,request time,and distance in the utility function,we demonstrate improvement in the resource allocation algorithms in terms of service rate,utility,and MES energy consumption.