A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transf...A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130?nm technology node is obtained. Tests of tilted angles θ=0 ° , 30 ° and 60 ° with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40?MeVcm 2 /mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to cosθ , furthermore the effective LET for SOI is more closely in inverse proportion to cosθ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to cosθ very well, which is also specifically explained.展开更多
Recently Rafiee et al. experimentally demonstrated the wetting transparency of graphene, but there is still no comprehensive theoretical explanation of this physical phenomenon. Since surface free energy is one of the...Recently Rafiee et al. experimentally demonstrated the wetting transparency of graphene, but there is still no comprehensive theoretical explanation of this physical phenomenon. Since surface free energy is one of the most important parameters characterizing material surfaces and is closely related to the wetting behavior, the surface free energy of suspended monolayer graphene is analyzed based on its microscopic formation mechanism. The surface free energy of suspended monolayer graphene is shown to be zero, which suggests its super-hydrophobicity. Neumann's equation of state is applied to further illustrate the contact angle, θ, of any liquid droplet on a suspended monolayer graphene is 180 o. This indicates that the van der Waals(vd W) interactions between the monolayer graphene and any liquid droplet are negligible; thus the monolayer graphene coatings exhibit wetting transparency to the underlying substrate. Moreover, molecular dynamics(MD) simulations are employed to further confirm the wetting transparency of graphene in comparison with experimental results of Rafiee et al. These findings provide a fundamental picture of wetting on ideal single atomic layer materials, including monolayer graphene. Thus, these results provide a useful guide for the design and manufacture of biomaterials, medical instruments, and renewable energy devices with monolayer graphene layers.展开更多
A shear impact energy model (SIEM) of erosion suitable for both dilute and dense particle flows is pro- posed based on the shear impact energy of particles in discrete element method (DEM) simulations. A number of...A shear impact energy model (SIEM) of erosion suitable for both dilute and dense particle flows is pro- posed based on the shear impact energy of particles in discrete element method (DEM) simulations. A number of DEM simulations are performed to determine the relationship between the shear impact energy predicted by the DEM model and the theoretical erosion energy. Simulation results show that nearly one-quarter of the shear impact energy will be converted to erosion during an impingement. According to the ratio of the shear impact energy to the erosion energy, it is feasible to predict erosion from the shear impact energy, which can be accumulated at each time step for each impingement during the DEM simulation. The total erosion of the target surface can be obtained by summing the volume of material removed from each impingement. The proposed erosion model is validated against experiment and results show that the SIEM combined with DEM accurately predicts abrasive erosions.展开更多
基金Supported by the Key Laboratory of Microsatellites,Chinese Academy of Sciences
文摘A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130?nm technology node is obtained. Tests of tilted angles θ=0 ° , 30 ° and 60 ° with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40?MeVcm 2 /mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to cosθ , furthermore the effective LET for SOI is more closely in inverse proportion to cosθ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to cosθ very well, which is also specifically explained.
基金the National Natural Science Foundation of China (Grant No. 51636002 and No. 51706118)the National Postdoctoral Program for Innovative Talents of China (Grant No. BX201600081)China Postdoctoral Science Foundation (Grant No. 2017M610889)
文摘Recently Rafiee et al. experimentally demonstrated the wetting transparency of graphene, but there is still no comprehensive theoretical explanation of this physical phenomenon. Since surface free energy is one of the most important parameters characterizing material surfaces and is closely related to the wetting behavior, the surface free energy of suspended monolayer graphene is analyzed based on its microscopic formation mechanism. The surface free energy of suspended monolayer graphene is shown to be zero, which suggests its super-hydrophobicity. Neumann's equation of state is applied to further illustrate the contact angle, θ, of any liquid droplet on a suspended monolayer graphene is 180 o. This indicates that the van der Waals(vd W) interactions between the monolayer graphene and any liquid droplet are negligible; thus the monolayer graphene coatings exhibit wetting transparency to the underlying substrate. Moreover, molecular dynamics(MD) simulations are employed to further confirm the wetting transparency of graphene in comparison with experimental results of Rafiee et al. These findings provide a fundamental picture of wetting on ideal single atomic layer materials, including monolayer graphene. Thus, these results provide a useful guide for the design and manufacture of biomaterials, medical instruments, and renewable energy devices with monolayer graphene layers.
文摘A shear impact energy model (SIEM) of erosion suitable for both dilute and dense particle flows is pro- posed based on the shear impact energy of particles in discrete element method (DEM) simulations. A number of DEM simulations are performed to determine the relationship between the shear impact energy predicted by the DEM model and the theoretical erosion energy. Simulation results show that nearly one-quarter of the shear impact energy will be converted to erosion during an impingement. According to the ratio of the shear impact energy to the erosion energy, it is feasible to predict erosion from the shear impact energy, which can be accumulated at each time step for each impingement during the DEM simulation. The total erosion of the target surface can be obtained by summing the volume of material removed from each impingement. The proposed erosion model is validated against experiment and results show that the SIEM combined with DEM accurately predicts abrasive erosions.