期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Modification of energy balance equations in Statistical Energy Analysis 被引量:7
1
作者 SUN Jincai WANG Chong and SUN Zhaohui (Institute of Acoustic Engineering Northwestern Polytechnical University Xi’an, 710072) 《Chinese Journal of Acoustics》 1996年第1期1-7,共7页
The energy balance equations in the Classical Statistical Energy Analysis (CSEA) are modified by the equations of power flow among the thtee serial coupled oscinators. The modified equations include not only the direc... The energy balance equations in the Classical Statistical Energy Analysis (CSEA) are modified by the equations of power flow among the thtee serial coupled oscinators. The modified equations include not only the direct power flow, but also the indirect power flow. The parameters in the modified equations can be expressed by those in the classical equations when the accuracy of the predicted results is able to satisfy the needs for ellgineering. 展开更多
关键词 energy balance equations Statistical energy Analysis Power flow Coupled oscillators
原文传递
Modelling Wave Transmission and Overtopping Based on Energy Balance Equation 被引量:2
2
作者 JI Qiaoling DONG Sheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第5期1033-1043,共11页
Wave transmission and overtopping around nearshore breakwaters can have significant influence on the transmitted wave parameters,which affects wave conditions and sediment transportation and becomes the focus of desig... Wave transmission and overtopping around nearshore breakwaters can have significant influence on the transmitted wave parameters,which affects wave conditions and sediment transportation and becomes the focus of design in engineering.The objective of this paper is to present a simplified model to estimate these important wave parameters.This paper describes the incorporation of wave transmission and overtopping module into a wave model for multi-directional random wave transformation based on energy balance equation with the consideration of wave shoaling,refraction,diffraction,reflection and breaking.Wen's frequency spectrum and non-linear dispersion relation are also included in this model.The influence of wave parameters of transmitted waves through a smooth submerged breakwater has been considered in this model with an improved description of the transmitted wave spectrum of van der Meer et al.(2000) by Carevic et al.(2013).This improved wave model has been validated through available laboratory experiments.Then the verified model is applied to investigate the effect of wave transmission and overtopping on wave heights behind low-crested breakwaters in a project for nearshore area.Numerical calculations are carried out with and without consideration of the wave transmission and overtopping,and comparison of them indicates that there is a considerable difference in wave height and thus it is important to include wave transmission and overtopping in modelling nearshore wave field with the presence of low-crested breakwaters.Therefore,this model can provide a general estimate of the desired wave field parameters,which is adequate for engineers at the preliminary design stage of low-crested breakwaters. 展开更多
关键词 random wave transformation energy balance equation numerical modelling Wen's spectrum DIFFRACTION transmission OVERTOPPING
下载PDF
A numerical study of coupled maps representing energy exchange processes between two environmental interfaces regarded as biophysical complex systems 被引量:1
3
作者 Dragutin Mihailovic Mirko Budincevic +2 位作者 Darko Kapor Igor Balaz Dusanka Perisic 《Natural Science》 2011年第1期75-84,共10页
The field of environmental sciences is abundant with various interfaces and is the right place for the application of new fundamental approaches leading towards a better understanding of environmental phenomena. Follo... The field of environmental sciences is abundant with various interfaces and is the right place for the application of new fundamental approaches leading towards a better understanding of environmental phenomena. Following the definition of environmental interface by Mihailovic and Bala? [1], such interface can be, for example, placed between: human or animal bodies and surrounding air, aquatic species and water and air around them, and natural or artificially built surfaces (vegetation, ice, snow, barren soil, water, urban communities) and the atmosphere, cells and surrounding environment, etc. Complex environmental interface systems are (i) open and hierarchically organised (ii) interactions between their constituent parts are nonlinear, and (iii) their interaction with the surrounding environment is noisy. These systems are therefore very sensitive to initial conditions, deterministic external perturbations and random fluctuations always present in nature. The study of noisy non-equilibrium processes is fundamental for modelling the dynamics of environmental interface regarded as biophysical complex system and for understanding the mechanisms of spatio-temporal pattern formation in contemporary environmental sciences. In this paper we will investigate an aspect of dynamics of energy flow based on the energy balance equation. The energy exchange between interacting environmen- tal interfaces regarded as biophysical complex systems can be represented by coupled maps. Therefore, we will numerically investigate coupled maps representing that exchange. In ana- lysis of behaviour of these maps we applied Lyapunov exponent and cross sample entropy. 展开更多
关键词 Environmental Interface NONLINEARITY CHAOS Logistic Equation energy balance Equation Coupled Maps HIERARCHY Biophysical Complex Systems
下载PDF
NEW CONSERVATION LAWS OF ENERGY AND C-D INEQUALITIES IN CONTINUA WITHOUT MICROSTRUCTURE
4
作者 DAI Tian-min(戴天民) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第2期127-134,共8页
Fundamental laws and balance equations as well as C-D inequalities in continuum mechanics are carefully restudied, incompleteness of existing balance laws of angular momentum and conservation laws of energy as well as... Fundamental laws and balance equations as well as C-D inequalities in continuum mechanics are carefully restudied, incompleteness of existing balance laws of angular momentum and conservation laws of energy as well as C-D inequalities are pointed out, and finally new and more general conservation laws of energy and corresponding balance equations of energy as well as C-D inequalities in local and nonlocal asymmetric continua are presented. 展开更多
关键词 local asymmetric nonlocal asymmetric continuum mechanics conservation laws of energy balance equations of energy C-D inequalities
下载PDF
The Effects of Climate on Development of Ecosystem in Oasis 被引量:8
5
作者 潘晓玲 巢纪平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第1期42-52,共11页
When vegetation and bare soil coexist, in consideration of some ecological conditions of plant, the total evapotranspiration rate of the oasis and the temperature of vegetation and soil in different climatic and ecolo... When vegetation and bare soil coexist, in consideration of some ecological conditions of plant, the total evapotranspiration rate of the oasis and the temperature of vegetation and soil in different climatic and ecological conditions are calculated by using the thermal energy balance equations of vegetation and soil The evapotranspiration rate depends on climatic and ecological conditions, in some conditions, quasi-bifurcation and multi-equilibrium state appear in the solutions of evapotranspiration rate in the areas covered by small part of vegetation. 展开更多
关键词 energy balance equations BIFURCATION bi-equilibrium state
下载PDF
Numerical Simulation of Multi-Directional Random Wave Transformation in a Yacht Port 被引量:3
6
作者 JI Qiaoling DONG Sheng +1 位作者 ZHAO Xizeng ZHANG Guowei 《Journal of Ocean University of China》 SCIE CAS 2012年第3期315-322,共8页
This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and break... This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor. 展开更多
关键词 random wave diffraction energy balance equation numerical simulation yacht port
下载PDF
Wind Power Potential in Interior Alaska from a Micrometeorological Perspective 被引量:1
7
作者 Hannah K.Ross John Cooney +5 位作者 Megan Hinzman Samuel Smock Gary Sellhorst Ralph Dlugi Nicole Molders Gerhard Kramm 《Atmospheric and Climate Sciences》 2014年第1期100-121,共22页
The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of k... The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of kinetic energy for macroscopic and turbulent systems, and in a further step, Bernoulli’s equation and integral equations that customarily serve as the key equations in momentum theory and blade-element analysis, where the Lanchester-Betz-Joukowsky limit, Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sorensen are exemplarily illustrated. The wind power potential at three different sites in Interior Alaska (Delta Junction, Eva Creek, and Poker Flat) is assessed by considering the results of wind field predictions for the winter period from October 1, 2008, to April 1, 2009 provided by the Weather Research and Forecasting (WRF) model to avoid time-consuming and expensive tall-tower observations in Interior Alaska which is characterized by a relatively low degree of infrastructure outside of the city of Fairbanks. To predict the average power output we use the Weibull distributions derived from the predicted wind fields for these three different sites and the power curves of five different propeller-type wind turbines with rated powers ranging from 2 MW to 2.5 MW. These power curves are represented by general logistic functions. The predicted power capacity for the Eva Creek site is compared with that of the Eva Creek wind farm established in 2012. The results of our predictions for the winter period 2008/2009 are nearly 20 percent lower than those of the Eva Creek wind farm for the period from January to September 2013. 展开更多
关键词 Wind Power Power Efficiency Wind Power Potential Wind Power Prediction WRF/Chem MICROMETEOROLOGY Momentum Theory Blade Element Analysis Betz Limit Glauert’s Optimum Rotor balance Equation for Momentum Equation of Continuity balance Equation for Kinetic energy Reynolds’Average Hesselberg’s Average Bernoulli’s Equation Integral equations Weibull Distribution General Logistic Function Eva Creek Wind Farm
下载PDF
On the Maximum of Wind Power Efficiency
8
作者 Gerhard Kramm Gary Sellhorst +3 位作者 Hannah K. Ross John Cooney Ralph Dlugi Nicole Mölders 《Journal of Power and Energy Engineering》 2016年第1期1-39,共39页
In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in ... In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in the atmospheric boundary layer (ABL) because the ABL is mainly governed by turbulent motions. We also demonstrate that the stream tube model customarily applied to derive the Rankine-Froude theorem must be corrected in the sense of Glauert to provide an appropriate value for the axial velocity at the rotor area. Including this correction leads to the Betz-Joukowsky limit, the maximum efficiency of 59.3 percent. Thus, Gorban’ et al.’s 30% value may be valid in water, but it has to be discarded for the atmosphere. We also show that Joukowsky’s constant circulation model leads to values of the maximum efficiency which are higher than the Betz-Jow-kowsky limit if the tip speed ratio is very low. Some of these values, however, have to be rejected for physical reasons. Based on Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and S&oslashrensen we also illustrate that the maximum efficiency of propeller-type wind turbines depends on tip-speed ratio and the number of blades. 展开更多
关键词 Wind Power Power Efficiency General Momentum Theory Axial Momentum Theory Blade Element Analysis Betz-Joukowsky Limit Joukowsky’s Constant Circulation Model Glauert’s Optimum Actuator Disk balance Equation for Momentum Equation of Continuity balance Equation for Kinetic energy Reynolds’ Average Hesselberg’s Average Favre’s Average Bernoulli’s Equation Integral equations
下载PDF
Numerical analysis of the return flow solar air heater(RF-SAH)with assimilation of V-type artificial roughness
9
作者 Prashant Raturi Hemlata Deolal Sanjeev Kimothi 《Energy and Built Environment》 2024年第2期185-193,共9页
A novel design of Return Flow Solar Air Heater(RFSAH)with different arrangements of baffles especially V-Type Artificial roughness is simulated and numerically analyzed with energy balance equations.To enhance the eff... A novel design of Return Flow Solar Air Heater(RFSAH)with different arrangements of baffles especially V-Type Artificial roughness is simulated and numerically analyzed with energy balance equations.To enhance the effectiveness of baffles,numerous studies have been conducted.The performance of the RFSAH is studied in terms of thermal efficiency,thermo-hydraulic efficiency,and optimization of baffle parameters.Maximum Thermal efficiency and thermo-hydraulic efficiency are found in RFSAH with baffle on both sides of the absorber plate and mass flow rate above 0.2kg/s.Sensitivity analysis of the influencing parameters is carried out and reported the best performance of the system on selective geometrical parameters(ψ=0.7,β=20%,e/H=1,p/e=0.8,α=60°).The results obtained from the present model are validated with the published experimental results and have been found in quite reasonable agreement with an average error of 16.45%.Thermal and Thermohydraulic efficiency of RFSAH with a baffle on both sides of the absorber plate is maximum among baffles below,above,and on both sides of the absorber plate.It is observed that the thermal efficiency of RFSAH is greater than SF-SAH.The proposed optimum baffles roughness is suggested to increase the air upholding time period for more efficient output. 展开更多
关键词 Numerical analysis energy balance equations Thermal Efficiency Return flow solar air heater V-baffles
原文传递
Numerical investigations on performance improvement mechanism of a high-power vertical centrifugal pump with special emphasis on hydraulic component matching
10
作者 Gang Yang Xi Shen +3 位作者 De-sheng Zhang Wen-hua Luo Jia Meng Xu-tao Zhao 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第4期649-667,共19页
The purpose of this paper is to investigate the performance improvement mechanism of a high power vertical centrifugal pump by using numerical calculations.Therefore,a comparative study of energy losses and internal f... The purpose of this paper is to investigate the performance improvement mechanism of a high power vertical centrifugal pump by using numerical calculations.Therefore,a comparative study of energy losses and internal flow characteristics in the original and optimized models was carried out with special attention to the hydraulic component matching.The optimized model(model B)was obtained by optimizing the vaned diffuser and volute based on the original model(model A),mainly the diffuser inlet diameter,diffuser inlet vane angle,volute channel inlet width and volute throat area were changed.Firstly,the comparative results on performance and energy losses of two models showed that the efficiency and head of model B was significantly increased under design and part-load conditions.It is mainly due to the dramatic reduction of energy loss PL in the diffuser and volute.Then,the comparisons of PL and flow patterns in the vaned diffuser showed that the matching optimization between the model B impeller outlet flow angle and diffuser inlet vane angle resulted in a better flow pattern in both the circumferential and axial directions of the diffuser,which leads to the PL3 reduction.The meridian velocity Vm of model B was significantly increased at diffuser inlet regions and resulted in improvements of flow patterns at diffuser middle and outlet regions as well as pressure expansion capacity.Finally,the comparisons of PL and flow characteristics in the volute showed that the turbulence loss reduction in the model B volute was due to the flow pattern improvement at diffuser outlet regions which provided better flow conditions at volute inlet regions.The matching optimization between the diffuser and volute significantly reduced the turbulence loss in volute sections 1–4 and enhanced the pressure expansion capacity in sections 8–10. 展开更多
关键词 High-power vertical centrifugal pump performance improvement mechanism hydraulic component matching flow pattern energy balance equation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部