In recent advancements within wireless sensor networks(WSN),the deployment of unmanned aerial vehicles(UAVs)has emerged as a groundbreaking strategy for enhancing routing efficiency and overall network functionality.T...In recent advancements within wireless sensor networks(WSN),the deployment of unmanned aerial vehicles(UAVs)has emerged as a groundbreaking strategy for enhancing routing efficiency and overall network functionality.This research introduces a sophisticated framework,driven by computational intelligence,that merges clustering techniques with UAV mobility to refine routing strategies in WSNs.The proposed approach divides the sensor field into distinct sectors and implements a novel weighting system for the selection of cluster heads(CHs).This system is primarily aimed at reducing energy consumption through meticulously planned routing and path determination.Employing a greedy algorithm for inter-cluster dialogue,our framework orchestrates CHs into an efficient communication chain.Through comparative analysis,the proposed model demonstrates a marked improvement over traditional methods such as the cluster chain mobile agent routing(CCMAR)and the energy-efficient cluster-based dynamic algorithms(ECCRA).Specifically,it showcases an impressive 15%increase in energy conservation and a 20%reduction in data transmission time,highlighting its advanced performance.Furthermore,this paper investigates the impact of various network parameters on the efficiency and robustness of the WSN,emphasizing the vital role of sophisticated computational strategies in optimizing network operations.展开更多
Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in...Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in largescale wireless sensor networks is considered to be a difficult area in the research.Sensor node clustering is a popular approach for WSN.Moreover,the sensor nodes are grouped to form clusters in a cluster-based WSN environment.The battery performance of the sensor nodes is likewise constrained.As a result,the energy efficiency of WSNs is critical.In specific,the energy usage is influenced by the loads on the sensor node as well as it ranges from the Base Station(BS).Therefore,energy efficiency and load balancing are very essential in WSN.In the proposed method,a novel Grey Wolf Improved Particle Swarm Optimization with Tabu Search Techniques(GW-IPSO-TS)was used.The selection of Cluster Heads(CHs)and routing path of every CH from the base station is enhanced by the proposed method.It provides the best routing path and increases the lifetime and energy efficiency of the network.End-to-end delay and packet loss rate have also been improved.The proposed GW-IPSO-TS method enhances the evaluation of alive nodes,dead nodes,network survival index,convergence rate,and standard deviation of sensor nodes.Compared to the existing algorithms,the proposed method outperforms better and improves the lifetime of the network.展开更多
The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like t...The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like the Internet of Things(IoT)and Cyber-Physical Systems(CPS).Data secur-ity,detection of faults,management of energy,collection and distribution of data,network protocol,network coverage,mobility of nodes,and network heterogene-ity are some of the issues confronted by WSNs.There is not much published information on issues related to node mobility and management of energy at the time of aggregation of data.Towards the goal of boosting the mobility-based WSNs’network performance and energy,data aggregation protocols such as the presently-used Mobility Low-Energy Adaptive Clustering Hierarchy(LEACH-M)and Energy Efficient Heterogeneous Clustered(EEHC)scheme have been exam-ined in this work.A novel Artificial Bee Colony(ABC)algorithm is proposed in this work for effective election of CHs and multipath routing in WSNs so as to enable effective data transfer to the Base Station(BS)with least energy utilization.There is avoidance of the local optima problem at the time of solution space search in this proposed technique.Experimentations have been conducted on a large WSN network that has issues with mobility of nodes.展开更多
Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present ...Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.展开更多
This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable th...This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.展开更多
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess...Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.展开更多
Wireless Ad Hoc Sensor Networks (WSNs) have received considerable academia research attention at present. The energy-constraint sensor nodes in WSNs operate on limited batteries, so it is a very important issue to use...Wireless Ad Hoc Sensor Networks (WSNs) have received considerable academia research attention at present. The energy-constraint sensor nodes in WSNs operate on limited batteries, so it is a very important issue to use energy efficiently and reduce power consumption. To maximize the network lifetime, it is essential to prolong each individual node’s lifetime through minimizing the transmission energy consumption, so that many minimum energy routing schemes for traditional mobile ad hoc network have been developed for this reason. This paper presents a novel minimum energy routing algorithm named Load-Balanced Minimum Energy Routing (LBMER) for WSNs considering both sensor nodes’ energy consumption status and the sensor nodes’ hierarchical congestion levels, which uses mixture of energy balance and traffic balance to solve the problem of “hot spots” of WSNs and avoid the situation of “hot spots” sensor nodes using their energy at much higher rate and die much faster than the other nodes. The path router established by LBMER will not be very congested and the traffic will be distributed evenly in the WSNs. Simulation results verified that the LBMER performance is better than that of Min-Hop routing and the existing minimum energy routing scheme MTPR (Total Transmission Power Routing).展开更多
Energy aware routing protocols can be classified into energy saver and energy manager. Energy saver protocols decrease energy consumption totally. Most of them try to find the shortest path between source and destinat...Energy aware routing protocols can be classified into energy saver and energy manager. Energy saver protocols decrease energy consumption totally. Most of them try to find the shortest path between source and destination to reduce energy consumption. But energy manager protocols balance energy consumption in network to avoid network partitioning. Finding best route only based on energy balancing consideration may lead to long path with high delay and decreases network lifetime. On the other hand, finding best route only with the shortest distance consideration may lead to network partitioning. This paper improves SEER [1] routing protocol. Traditional SEER is only energy saver and has poor idea about energy balancing. Our proposed protocol, named BEAR, considers energy balancing and optimal distance both. It finds a fair tradeoff between energy balancing and optimal distance by learning automata concept. We simulate and evaluate routing protocols by Glomosim [2] simulator.展开更多
In this paper, we consider a network of energy constrained sensors deployed over a region. Each sensor node in such a network is systematically gathering and transmitting sensed data to a base station (via cluster- he...In this paper, we consider a network of energy constrained sensors deployed over a region. Each sensor node in such a network is systematically gathering and transmitting sensed data to a base station (via cluster- heads). This paper focuses on reducing the power consumption of wireless sensor networks. Firstly, we proposed an Energy-balanced Clustering Routing Algorithm called LEACH-L, which is suitable for a large scope wireless sensor network. Secondly, optimum hop-counts are deduced. Lastly, optimum position of transmitting node is estimated. Simulation results show that our modified scheme can extend the network lifetime by up to 80% before first node dies in the network. Through both theoretical analysis and numerical simulations, it is shown that the proposed algorithm achieves higher performance than the existing clustering algorithms such as LEACH, LEACH-M.展开更多
Throughout the use of the small battery-operated sensor nodes encou-rage us to develop an energy-efficient routing protocol for wireless sensor networks(WSNs).The development of an energy-efficient routing protocol is...Throughout the use of the small battery-operated sensor nodes encou-rage us to develop an energy-efficient routing protocol for wireless sensor networks(WSNs).The development of an energy-efficient routing protocol is a mainly adopted technique to enhance the lifetime of WSN.Many routing protocols are available,but the issue is still alive.Clustering is one of the most important techniques in the existing routing protocols.In the clustering-based model,the important thing is the selection of the cluster heads.In this paper,we have proposed a scheme that uses the bubble sort algorithm for cluster head selection by considering the remaining energy and the distance of the nodes in each cluster.Initially,the bubble sort algorithm chose the two nodes with the maximum remaining energy in the cluster and chose a cluster head with a small distance.The proposed scheme performs hierarchal routing and direct routing with some energy thresholds.The simulation will be performed in MATLAB to justify its performance and results and compared with the ECHERP model to justify its performance.Moreover,the simulations will be performed in two scenarios,gate-way-based and without gateway to achieve more energy-efficient results.展开更多
Mobile wireless sensor network (MWSN) has the features of self-organization, multiple-hop and limited energy resources. It is vulnerable to a wide set of security attacks, including those targeting the routing protoco...Mobile wireless sensor network (MWSN) has the features of self-organization, multiple-hop and limited energy resources. It is vulnerable to a wide set of security attacks, including those targeting the routing protocol functionality. In this paper, the existing security problems and solutions in MWSN are summarized, and then a trust management system based on neighbor monitoring is proposed. In the trust management system, the trust value is calculated by the neighbor monitoring mechanism, and the direct trust value and the indirect trust value are combined to establish the distributed trust model to detect the malicious nodes. The consistency check algorithm is capable of defending against the attacks on the trust model. In addition, because of the limited energy of the sensor nodes, the energy-balanced algorithm is introduced to prolong the lifespan of MWSN. The residual energy and energy density are considered in the routing decision. Finally, the simulation experiments show that the proposed algorithm can detect the malicious nodes effectively and achieve the energy-balanced goal to prolong the lifespan of MWSN.展开更多
In wireless sensor networks, clustering of nodes effectively conserves considerable amount of energy resulting in increased network life-time. Clustering protocols do not consider density of nodes in cluster formation...In wireless sensor networks, clustering of nodes effectively conserves considerable amount of energy resulting in increased network life-time. Clustering protocols do not consider density of nodes in cluster formation, which increases the possibility of hotspots in areas where the density of nodes is very less. If the node density is very high, cluster-heads may expend high energy leading to their early death. Existing cluster protocols that concentrate on energy conservation have not exhibited their impact on packet delivery and delay. In this proposed protocol, clusters are constructed based on the range of nodes, distance between neighbouring nodes and density of nodes over a region resulting in the formation of dissimilar clusters. With this method, the entire sensing region is considered to be a large circular region with base station positioned at the centre. Initially, the nodes that can be able to reach base station in a single hop are considered for constructing inner smaller circular regions over the entire region. This method is iterated for n-hop nodes until n-concentric circular regions are formed. These circular boundaries are reconstructed based on a distance metric, density of nodes and a divergence factor. Using this architecture, network analysis is done by routing data to the base station from different sized clusters. Based on simulation results, this new protocol Dynamic Unequal Clustered Routing (D-UCR), despite being energy efficient, showed better data delivery ratio and minimized delay when compared with other traditional clustering algorithms such as Leach and Equal Clustered Routing.展开更多
Energy conservation has become a significant consideration in wireless sensor networks(WSN).In the sensor network,the sensor nodes have internal batteries,and as a result,they expire after a certain period.As a result,...Energy conservation has become a significant consideration in wireless sensor networks(WSN).In the sensor network,the sensor nodes have internal batteries,and as a result,they expire after a certain period.As a result,expanding the life duration of sensing devices by improving data depletion in an effective and sustainable energy-efficient way remains a challenge.Also,the clustering strategy employs to enhance or extend the life cycle of WSNs.We identify the supervisory head node(SH)or cluster head(CH)in every grouping considered the feasible strategy for power-saving route discovery in the clustering model,which diminishes the communication overhead in the WSN.However,the critical issue was determining the best SH for ensuring timely communication services.Our secure and energy concise route revamp technology(SECRET)protocol involves selecting an energy-concise cluster head(ECH)and route revamping to optimize navigation.The sensors transmit information over the ECH,which delivers the information to the base station via the determined optimal path using our strategy for effective data transmission.We modeled our methods to accom-plish power-efficient multi-hop routing.Furthermore,protected navigation helps to preserve energy when routing.The suggested solution improves energy savings,packet delivery ratio(PDR),route latency(RL),network lifetime(NL),and scalability.展开更多
To efficiently complete a complex computation task,the complex task should be decomposed into subcomputation tasks that run parallel in edge computing.Wireless Sensor Network(WSN)is a typical application of parallel c...To efficiently complete a complex computation task,the complex task should be decomposed into subcomputation tasks that run parallel in edge computing.Wireless Sensor Network(WSN)is a typical application of parallel computation.To achieve highly reliable parallel computation for wireless sensor network,the network's lifetime needs to be extended.Therefore,a proper task allocation strategy is needed to reduce the energy consumption and balance the load of the network.This paper proposes a task model and a cluster-based WSN model in edge computing.In our model,different tasks require different types of resources and different sensors provide different types of resources,so our model is heterogeneous,which makes the model more practical.Then we propose a task allocation algorithm that combines the Genetic Algorithm(GA)and the Ant Colony Optimization(ACO)algorithm.The algorithm concentrates on energy conservation and load balancing so that the lifetime of the network can be extended.The experimental result shows the algorithm's effectiveness and advantages in energy conservation and load balancing.展开更多
Recently,energy harvesting wireless sensor networks(EHWSN)have increased significant attention among research communities.By harvesting energy from the neighboring environment,the sensors in EHWSN resolve the energy c...Recently,energy harvesting wireless sensor networks(EHWSN)have increased significant attention among research communities.By harvesting energy from the neighboring environment,the sensors in EHWSN resolve the energy constraint problem and offers lengthened network lifetime.Clustering is one of the proficient ways for accomplishing even improved lifetime in EHWSN.The clustering process intends to appropriately elect the cluster heads(CHs)and construct clusters.Though several models are available in the literature,it is still needed to accomplish energy efficiency and security in EHWSN.In this view,this study develops a novel Chaotic Rider Optimization Based Clustering Protocol for Secure Energy Harvesting Wireless Sensor Networks(CROC-SEHWSN)model.The presented CROC-SEHWSN model aims to accomplish energy efficiency by clustering the node in EHWSN.The CROC-SEHWSN model is based on the integration of chaotic concepts with traditional rider optimization(RO)algorithm.Besides,the CROC-SEHWSN model derives a fitness function(FF)involving seven distinct parameters connected to WSN.To accomplish security,trust factor and link quality metrics are considered in the FF.The design of RO algorithm for secure clustering process shows the novelty of the work.In order to demonstrate the enhanced performance of the CROC-SEHWSN approach,a wide range of simulations are carried out and the outcomes are inspected in distinct aspects.The experimental outcome demonstrated the superior performance of the CROC-SEHWSN technique on the recent approaches with maximum network lifetime of 387.40 and 393.30 s under two scenarios.展开更多
Wireless Sensor Network(WSN)technology is the real-time applica-tion that is growing rapidly as the result of smart environments.Battery power is one of the most significant resources in WSN.For enhancing a power facto...Wireless Sensor Network(WSN)technology is the real-time applica-tion that is growing rapidly as the result of smart environments.Battery power is one of the most significant resources in WSN.For enhancing a power factor,the clustering techniques are used.During the forward of data in WSN,more power is consumed.In the existing system,it works with Load Balanced Cluster-ing Method(LBCM)and provides the lifespan of the network with scalability and reliability.In the existing system,it does not deal with end-to-end delay and deliv-ery of packets.For overcoming these issues in WSN,the proposed Genetic Algo-rithm based on Chicken Swarm Optimization(GA-CSO)with Load Balanced Clustering Method(LBCM)is used.Genetic Algorithm generates chromosomes in an arbitrary method then the chromosomes values are calculated using Fitness Function.Chicken Swarm Optimization(CSO)helps to solve the complex opti-mization problems.Also,it consists of chickens,hens,and rooster.It divides the chicken into clusters.Load Balanced Clustering Method(LBCM)maintains the energy during communication among the sensor nodes and also it balances the load in the gateways.The proposed GA-CSO with LBCM improves the life-span of the network.Moreover,it minimizes the energy consumption and also bal-ances the load over the network.The proposed method outperforms by using the following metrics such as energy efficiency,ratio of packet delivery,throughput of the network,lifetime of the sensor nodes.Therefore,the evaluation result shows the energy efficiency that has achieved 83.56%and the delivery ratio of the packet has reached 99.12%.Also,it has attained linear standard deviation and reduced the end-to-end delay as 97.32 ms.展开更多
Wireless sensor networks(WSNs)encompass a massive set of sensor nodes,which are self-configurable,inexpensive,and compact.The sensor nodes undergo random deployment in the target area and transmit data to base station ...Wireless sensor networks(WSNs)encompass a massive set of sensor nodes,which are self-configurable,inexpensive,and compact.The sensor nodes undergo random deployment in the target area and transmit data to base station using inbuilt transceiver.For reducing energy consumption and lengthen lifetime of WSN,multihop routing protocols can be designed.This study develops an improved rat swarm optimization based energy aware multi-hop routing(IRSO-EAMHR)protocol for WSN.An important intention of the IRSO-EAMHR method is for determining optimal routes to base station(BS)in the clustered WSN.Primarily,a weighted clustering process is performed to group the nodes into clusters and select cluster heads(CHs).Next,the IRSO-EAMHR approach derives afitness function containing three input parameters(residual energy,dis-tance,and node degree)for routing process.The IRSO technique was designed by the integration of Levy movement concepts into the traditional RSO algorithm.The experimental result analysis of the IRSO-EAMHR technique is carried out and the outcomes are examined in various aspects.The simulation outcomes demonstrate the promising performance of the IRSO-EAMHR technique over the recent state of art approaches.展开更多
Wireless sensor network(WSN)includes a set of self-organizing and homogenous nodes employed for data collection and tracking applications.It comprises a massive set of nodes with restricted energy and processing abili...Wireless sensor network(WSN)includes a set of self-organizing and homogenous nodes employed for data collection and tracking applications.It comprises a massive set of nodes with restricted energy and processing abilities.Energy dissipation is a major concern involved in the design of WSN.Clustering and routing protocols are considered effective ways to reduce the quantity of energy dissipation using metaheuristic algorithms.In order to design an energy aware cluster-based route planning scheme,this study introduces a novel Honey Badger Based Clustering with African Vulture Optimization based Routing(HBAC-AVOR)protocol for WSN.The presented HBAC-AVOR model mainly aims to cluster the nodes in WSN effectually and organize the routes in an energy-efficient way.The presented HBAC-AVOR model follows a two stage process.At the initial stage,the HBAC technique is exploited to choose an opti-mal set of cluster heads(CHs)utilizing afitness function involving many input parameters.Next,the AVOR approach was executed for determining the optimal routes to BS and thereby lengthens the lifetime of WSN.A detailed simulation analysis was executed to highlight the increased outcomes of the HBAC-AVOR protocol.On comparing with existing techniques,the HBAC-AVOR model has outperformed existing techniques with maximum lifetime.展开更多
The performance of Wireless Sensor Networks(WSNs)is an important fragment of the Internet of Things(IoT),where the current WSNbuilt IoT network’s sensor hubs are enticing due to their critical resources.By grouping h...The performance of Wireless Sensor Networks(WSNs)is an important fragment of the Internet of Things(IoT),where the current WSNbuilt IoT network’s sensor hubs are enticing due to their critical resources.By grouping hubs,a clustering convention offers a useful solution for ensuring energy-saving of hubs andHybridMedia Access Control(HMAC)during the course of the organization.Nevertheless,current grouping standards suffer from issues with the grouping structure that impacts the exhibition of these conventions negatively.In this investigation,we recommend an Improved Energy-Proficient Algorithm(IEPA)for HMAC throughout the lifetime of the WSN-based IoT.Three consecutive segments are suggested.For the covering of adjusted clusters,an ideal number of clusters is determined first.Then,fair static clusters are shaped,based on an updated calculation for fluffy cluster heads,to reduce and adapt the energy use of the sensor hubs.Cluster heads(CHs)are,ultimately,selected in optimal locations,with the pivot of the cluster heads working among cluster members.Specifically,the proposed convention diminishes and balances the energy utilization of hubs by improving the grouping structure,where the IEPAis reasonable for systems that need a long time.The assessment results demonstrate that the IEPA performs better than existing conventions.展开更多
The amount of needed control messages in wireless sensor networks(WSN)is affected by the storage strategy of detected events.Because broadcasting superfluous control messages consumes excess energy,the network lifespa...The amount of needed control messages in wireless sensor networks(WSN)is affected by the storage strategy of detected events.Because broadcasting superfluous control messages consumes excess energy,the network lifespan can be extended if the quantity of control messages is decreased.In this study,an optimized storage technique having low control overhead for tracking the objects in WSN is introduced.The basic concept is to retain observed events in internal memory and preserve the relationship between sensed information and sensor nodes using a novel inexpensive data structure entitled Ordered Binary Linked List(OBLL).Whenever an object passes over the sensor area,the recognizing sensor can immediately produce an OBLL along the object’s route.To retrieve the entire information,the OBLL can be traversed with logarithmic complexity which is much less than the traversing complexity of existing linked list structures.Performance evaluation and simulations were carried out to ensure that the suggested technique minimizes the number of messages and thus saving energy and extending the network life.展开更多
基金supported in part by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A03039493)in part by the NRF Grant funded by the Korea government(MSIT)(NRF-2022R1A2C1004401).
文摘In recent advancements within wireless sensor networks(WSN),the deployment of unmanned aerial vehicles(UAVs)has emerged as a groundbreaking strategy for enhancing routing efficiency and overall network functionality.This research introduces a sophisticated framework,driven by computational intelligence,that merges clustering techniques with UAV mobility to refine routing strategies in WSNs.The proposed approach divides the sensor field into distinct sectors and implements a novel weighting system for the selection of cluster heads(CHs).This system is primarily aimed at reducing energy consumption through meticulously planned routing and path determination.Employing a greedy algorithm for inter-cluster dialogue,our framework orchestrates CHs into an efficient communication chain.Through comparative analysis,the proposed model demonstrates a marked improvement over traditional methods such as the cluster chain mobile agent routing(CCMAR)and the energy-efficient cluster-based dynamic algorithms(ECCRA).Specifically,it showcases an impressive 15%increase in energy conservation and a 20%reduction in data transmission time,highlighting its advanced performance.Furthermore,this paper investigates the impact of various network parameters on the efficiency and robustness of the WSN,emphasizing the vital role of sophisticated computational strategies in optimizing network operations.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Larg Groups project Under Grant Number(71/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R238)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR20.
文摘Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in largescale wireless sensor networks is considered to be a difficult area in the research.Sensor node clustering is a popular approach for WSN.Moreover,the sensor nodes are grouped to form clusters in a cluster-based WSN environment.The battery performance of the sensor nodes is likewise constrained.As a result,the energy efficiency of WSNs is critical.In specific,the energy usage is influenced by the loads on the sensor node as well as it ranges from the Base Station(BS).Therefore,energy efficiency and load balancing are very essential in WSN.In the proposed method,a novel Grey Wolf Improved Particle Swarm Optimization with Tabu Search Techniques(GW-IPSO-TS)was used.The selection of Cluster Heads(CHs)and routing path of every CH from the base station is enhanced by the proposed method.It provides the best routing path and increases the lifetime and energy efficiency of the network.End-to-end delay and packet loss rate have also been improved.The proposed GW-IPSO-TS method enhances the evaluation of alive nodes,dead nodes,network survival index,convergence rate,and standard deviation of sensor nodes.Compared to the existing algorithms,the proposed method outperforms better and improves the lifetime of the network.
文摘The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like the Internet of Things(IoT)and Cyber-Physical Systems(CPS).Data secur-ity,detection of faults,management of energy,collection and distribution of data,network protocol,network coverage,mobility of nodes,and network heterogene-ity are some of the issues confronted by WSNs.There is not much published information on issues related to node mobility and management of energy at the time of aggregation of data.Towards the goal of boosting the mobility-based WSNs’network performance and energy,data aggregation protocols such as the presently-used Mobility Low-Energy Adaptive Clustering Hierarchy(LEACH-M)and Energy Efficient Heterogeneous Clustered(EEHC)scheme have been exam-ined in this work.A novel Artificial Bee Colony(ABC)algorithm is proposed in this work for effective election of CHs and multipath routing in WSNs so as to enable effective data transfer to the Base Station(BS)with least energy utilization.There is avoidance of the local optima problem at the time of solution space search in this proposed technique.Experimentations have been conducted on a large WSN network that has issues with mobility of nodes.
文摘Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.
基金supported by National Natural Science Foundation of China(No.61901229 and No.62071242)the Project of Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network(No.SDGC2234)+1 种基金the Open Research Project of Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology(No.NJUZDS2022-008)the Post-Doctoral Research Supporting Program of Jiangsu Province(No.SBH20).
文摘This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.
文摘Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.
文摘Wireless Ad Hoc Sensor Networks (WSNs) have received considerable academia research attention at present. The energy-constraint sensor nodes in WSNs operate on limited batteries, so it is a very important issue to use energy efficiently and reduce power consumption. To maximize the network lifetime, it is essential to prolong each individual node’s lifetime through minimizing the transmission energy consumption, so that many minimum energy routing schemes for traditional mobile ad hoc network have been developed for this reason. This paper presents a novel minimum energy routing algorithm named Load-Balanced Minimum Energy Routing (LBMER) for WSNs considering both sensor nodes’ energy consumption status and the sensor nodes’ hierarchical congestion levels, which uses mixture of energy balance and traffic balance to solve the problem of “hot spots” of WSNs and avoid the situation of “hot spots” sensor nodes using their energy at much higher rate and die much faster than the other nodes. The path router established by LBMER will not be very congested and the traffic will be distributed evenly in the WSNs. Simulation results verified that the LBMER performance is better than that of Min-Hop routing and the existing minimum energy routing scheme MTPR (Total Transmission Power Routing).
文摘Energy aware routing protocols can be classified into energy saver and energy manager. Energy saver protocols decrease energy consumption totally. Most of them try to find the shortest path between source and destination to reduce energy consumption. But energy manager protocols balance energy consumption in network to avoid network partitioning. Finding best route only based on energy balancing consideration may lead to long path with high delay and decreases network lifetime. On the other hand, finding best route only with the shortest distance consideration may lead to network partitioning. This paper improves SEER [1] routing protocol. Traditional SEER is only energy saver and has poor idea about energy balancing. Our proposed protocol, named BEAR, considers energy balancing and optimal distance both. It finds a fair tradeoff between energy balancing and optimal distance by learning automata concept. We simulate and evaluate routing protocols by Glomosim [2] simulator.
文摘In this paper, we consider a network of energy constrained sensors deployed over a region. Each sensor node in such a network is systematically gathering and transmitting sensed data to a base station (via cluster- heads). This paper focuses on reducing the power consumption of wireless sensor networks. Firstly, we proposed an Energy-balanced Clustering Routing Algorithm called LEACH-L, which is suitable for a large scope wireless sensor network. Secondly, optimum hop-counts are deduced. Lastly, optimum position of transmitting node is estimated. Simulation results show that our modified scheme can extend the network lifetime by up to 80% before first node dies in the network. Through both theoretical analysis and numerical simulations, it is shown that the proposed algorithm achieves higher performance than the existing clustering algorithms such as LEACH, LEACH-M.
文摘Throughout the use of the small battery-operated sensor nodes encou-rage us to develop an energy-efficient routing protocol for wireless sensor networks(WSNs).The development of an energy-efficient routing protocol is a mainly adopted technique to enhance the lifetime of WSN.Many routing protocols are available,but the issue is still alive.Clustering is one of the most important techniques in the existing routing protocols.In the clustering-based model,the important thing is the selection of the cluster heads.In this paper,we have proposed a scheme that uses the bubble sort algorithm for cluster head selection by considering the remaining energy and the distance of the nodes in each cluster.Initially,the bubble sort algorithm chose the two nodes with the maximum remaining energy in the cluster and chose a cluster head with a small distance.The proposed scheme performs hierarchal routing and direct routing with some energy thresholds.The simulation will be performed in MATLAB to justify its performance and results and compared with the ECHERP model to justify its performance.Moreover,the simulations will be performed in two scenarios,gate-way-based and without gateway to achieve more energy-efficient results.
文摘Mobile wireless sensor network (MWSN) has the features of self-organization, multiple-hop and limited energy resources. It is vulnerable to a wide set of security attacks, including those targeting the routing protocol functionality. In this paper, the existing security problems and solutions in MWSN are summarized, and then a trust management system based on neighbor monitoring is proposed. In the trust management system, the trust value is calculated by the neighbor monitoring mechanism, and the direct trust value and the indirect trust value are combined to establish the distributed trust model to detect the malicious nodes. The consistency check algorithm is capable of defending against the attacks on the trust model. In addition, because of the limited energy of the sensor nodes, the energy-balanced algorithm is introduced to prolong the lifespan of MWSN. The residual energy and energy density are considered in the routing decision. Finally, the simulation experiments show that the proposed algorithm can detect the malicious nodes effectively and achieve the energy-balanced goal to prolong the lifespan of MWSN.
文摘In wireless sensor networks, clustering of nodes effectively conserves considerable amount of energy resulting in increased network life-time. Clustering protocols do not consider density of nodes in cluster formation, which increases the possibility of hotspots in areas where the density of nodes is very less. If the node density is very high, cluster-heads may expend high energy leading to their early death. Existing cluster protocols that concentrate on energy conservation have not exhibited their impact on packet delivery and delay. In this proposed protocol, clusters are constructed based on the range of nodes, distance between neighbouring nodes and density of nodes over a region resulting in the formation of dissimilar clusters. With this method, the entire sensing region is considered to be a large circular region with base station positioned at the centre. Initially, the nodes that can be able to reach base station in a single hop are considered for constructing inner smaller circular regions over the entire region. This method is iterated for n-hop nodes until n-concentric circular regions are formed. These circular boundaries are reconstructed based on a distance metric, density of nodes and a divergence factor. Using this architecture, network analysis is done by routing data to the base station from different sized clusters. Based on simulation results, this new protocol Dynamic Unequal Clustered Routing (D-UCR), despite being energy efficient, showed better data delivery ratio and minimized delay when compared with other traditional clustering algorithms such as Leach and Equal Clustered Routing.
文摘Energy conservation has become a significant consideration in wireless sensor networks(WSN).In the sensor network,the sensor nodes have internal batteries,and as a result,they expire after a certain period.As a result,expanding the life duration of sensing devices by improving data depletion in an effective and sustainable energy-efficient way remains a challenge.Also,the clustering strategy employs to enhance or extend the life cycle of WSNs.We identify the supervisory head node(SH)or cluster head(CH)in every grouping considered the feasible strategy for power-saving route discovery in the clustering model,which diminishes the communication overhead in the WSN.However,the critical issue was determining the best SH for ensuring timely communication services.Our secure and energy concise route revamp technology(SECRET)protocol involves selecting an energy-concise cluster head(ECH)and route revamping to optimize navigation.The sensors transmit information over the ECH,which delivers the information to the base station via the determined optimal path using our strategy for effective data transmission.We modeled our methods to accom-plish power-efficient multi-hop routing.Furthermore,protected navigation helps to preserve energy when routing.The suggested solution improves energy savings,packet delivery ratio(PDR),route latency(RL),network lifetime(NL),and scalability.
基金supported by Postdoctoral Science Foundation of China(No.2021M702441)National Natural Science Foundation of China(No.61871283)。
文摘To efficiently complete a complex computation task,the complex task should be decomposed into subcomputation tasks that run parallel in edge computing.Wireless Sensor Network(WSN)is a typical application of parallel computation.To achieve highly reliable parallel computation for wireless sensor network,the network's lifetime needs to be extended.Therefore,a proper task allocation strategy is needed to reduce the energy consumption and balance the load of the network.This paper proposes a task model and a cluster-based WSN model in edge computing.In our model,different tasks require different types of resources and different sensors provide different types of resources,so our model is heterogeneous,which makes the model more practical.Then we propose a task allocation algorithm that combines the Genetic Algorithm(GA)and the Ant Colony Optimization(ACO)algorithm.The algorithm concentrates on energy conservation and load balancing so that the lifetime of the network can be extended.The experimental result shows the algorithm's effectiveness and advantages in energy conservation and load balancing.
基金This research was supported by the Deanship of Scientific Research Project(RGP.2/162/43)King Khalid University,Kingdom of Saudi Arabia.
文摘Recently,energy harvesting wireless sensor networks(EHWSN)have increased significant attention among research communities.By harvesting energy from the neighboring environment,the sensors in EHWSN resolve the energy constraint problem and offers lengthened network lifetime.Clustering is one of the proficient ways for accomplishing even improved lifetime in EHWSN.The clustering process intends to appropriately elect the cluster heads(CHs)and construct clusters.Though several models are available in the literature,it is still needed to accomplish energy efficiency and security in EHWSN.In this view,this study develops a novel Chaotic Rider Optimization Based Clustering Protocol for Secure Energy Harvesting Wireless Sensor Networks(CROC-SEHWSN)model.The presented CROC-SEHWSN model aims to accomplish energy efficiency by clustering the node in EHWSN.The CROC-SEHWSN model is based on the integration of chaotic concepts with traditional rider optimization(RO)algorithm.Besides,the CROC-SEHWSN model derives a fitness function(FF)involving seven distinct parameters connected to WSN.To accomplish security,trust factor and link quality metrics are considered in the FF.The design of RO algorithm for secure clustering process shows the novelty of the work.In order to demonstrate the enhanced performance of the CROC-SEHWSN approach,a wide range of simulations are carried out and the outcomes are inspected in distinct aspects.The experimental outcome demonstrated the superior performance of the CROC-SEHWSN technique on the recent approaches with maximum network lifetime of 387.40 and 393.30 s under two scenarios.
基金supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(Grant Number:HI21C1831)the Soonchunhyang University Research Fund.
文摘Wireless Sensor Network(WSN)technology is the real-time applica-tion that is growing rapidly as the result of smart environments.Battery power is one of the most significant resources in WSN.For enhancing a power factor,the clustering techniques are used.During the forward of data in WSN,more power is consumed.In the existing system,it works with Load Balanced Cluster-ing Method(LBCM)and provides the lifespan of the network with scalability and reliability.In the existing system,it does not deal with end-to-end delay and deliv-ery of packets.For overcoming these issues in WSN,the proposed Genetic Algo-rithm based on Chicken Swarm Optimization(GA-CSO)with Load Balanced Clustering Method(LBCM)is used.Genetic Algorithm generates chromosomes in an arbitrary method then the chromosomes values are calculated using Fitness Function.Chicken Swarm Optimization(CSO)helps to solve the complex opti-mization problems.Also,it consists of chickens,hens,and rooster.It divides the chicken into clusters.Load Balanced Clustering Method(LBCM)maintains the energy during communication among the sensor nodes and also it balances the load in the gateways.The proposed GA-CSO with LBCM improves the life-span of the network.Moreover,it minimizes the energy consumption and also bal-ances the load over the network.The proposed method outperforms by using the following metrics such as energy efficiency,ratio of packet delivery,throughput of the network,lifetime of the sensor nodes.Therefore,the evaluation result shows the energy efficiency that has achieved 83.56%and the delivery ratio of the packet has reached 99.12%.Also,it has attained linear standard deviation and reduced the end-to-end delay as 97.32 ms.
文摘Wireless sensor networks(WSNs)encompass a massive set of sensor nodes,which are self-configurable,inexpensive,and compact.The sensor nodes undergo random deployment in the target area and transmit data to base station using inbuilt transceiver.For reducing energy consumption and lengthen lifetime of WSN,multihop routing protocols can be designed.This study develops an improved rat swarm optimization based energy aware multi-hop routing(IRSO-EAMHR)protocol for WSN.An important intention of the IRSO-EAMHR method is for determining optimal routes to base station(BS)in the clustered WSN.Primarily,a weighted clustering process is performed to group the nodes into clusters and select cluster heads(CHs).Next,the IRSO-EAMHR approach derives afitness function containing three input parameters(residual energy,dis-tance,and node degree)for routing process.The IRSO technique was designed by the integration of Levy movement concepts into the traditional RSO algorithm.The experimental result analysis of the IRSO-EAMHR technique is carried out and the outcomes are examined in various aspects.The simulation outcomes demonstrate the promising performance of the IRSO-EAMHR technique over the recent state of art approaches.
文摘Wireless sensor network(WSN)includes a set of self-organizing and homogenous nodes employed for data collection and tracking applications.It comprises a massive set of nodes with restricted energy and processing abilities.Energy dissipation is a major concern involved in the design of WSN.Clustering and routing protocols are considered effective ways to reduce the quantity of energy dissipation using metaheuristic algorithms.In order to design an energy aware cluster-based route planning scheme,this study introduces a novel Honey Badger Based Clustering with African Vulture Optimization based Routing(HBAC-AVOR)protocol for WSN.The presented HBAC-AVOR model mainly aims to cluster the nodes in WSN effectually and organize the routes in an energy-efficient way.The presented HBAC-AVOR model follows a two stage process.At the initial stage,the HBAC technique is exploited to choose an opti-mal set of cluster heads(CHs)utilizing afitness function involving many input parameters.Next,the AVOR approach was executed for determining the optimal routes to BS and thereby lengthens the lifetime of WSN.A detailed simulation analysis was executed to highlight the increased outcomes of the HBAC-AVOR protocol.On comparing with existing techniques,the HBAC-AVOR model has outperformed existing techniques with maximum lifetime.
文摘The performance of Wireless Sensor Networks(WSNs)is an important fragment of the Internet of Things(IoT),where the current WSNbuilt IoT network’s sensor hubs are enticing due to their critical resources.By grouping hubs,a clustering convention offers a useful solution for ensuring energy-saving of hubs andHybridMedia Access Control(HMAC)during the course of the organization.Nevertheless,current grouping standards suffer from issues with the grouping structure that impacts the exhibition of these conventions negatively.In this investigation,we recommend an Improved Energy-Proficient Algorithm(IEPA)for HMAC throughout the lifetime of the WSN-based IoT.Three consecutive segments are suggested.For the covering of adjusted clusters,an ideal number of clusters is determined first.Then,fair static clusters are shaped,based on an updated calculation for fluffy cluster heads,to reduce and adapt the energy use of the sensor hubs.Cluster heads(CHs)are,ultimately,selected in optimal locations,with the pivot of the cluster heads working among cluster members.Specifically,the proposed convention diminishes and balances the energy utilization of hubs by improving the grouping structure,where the IEPAis reasonable for systems that need a long time.The assessment results demonstrate that the IEPA performs better than existing conventions.
文摘The amount of needed control messages in wireless sensor networks(WSN)is affected by the storage strategy of detected events.Because broadcasting superfluous control messages consumes excess energy,the network lifespan can be extended if the quantity of control messages is decreased.In this study,an optimized storage technique having low control overhead for tracking the objects in WSN is introduced.The basic concept is to retain observed events in internal memory and preserve the relationship between sensed information and sensor nodes using a novel inexpensive data structure entitled Ordered Binary Linked List(OBLL).Whenever an object passes over the sensor area,the recognizing sensor can immediately produce an OBLL along the object’s route.To retrieve the entire information,the OBLL can be traversed with logarithmic complexity which is much less than the traversing complexity of existing linked list structures.Performance evaluation and simulations were carried out to ensure that the suggested technique minimizes the number of messages and thus saving energy and extending the network life.