To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the ...To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the equations of elastic potential of coal and gas dilatation energy theory were set up to process a contrast calculation of the sizes of two kinds of energy. The results show that gas dilatation energy is the uppermost energy source causing outburst occurrence. Furthermore, the mathematical model of spherical flow field gas dilatation energy release was established and MATLAB software was applied to make a numerical calculation analysis on the law of gas dilatation energy release. The results indicate that the gas dilatation energy is closely related to gas parameters and its energy index does reflect the possibility of coal seam outburst.展开更多
Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and ex- periments. However, JI method has not yet been w...Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and ex- periments. However, JI method has not yet been well tested in complex systems such as ligand-receptor molecular pairs. In this paper, we applied a huge number of steered molec- ular dynamics (SMD) simulations to dissociate the protease of human immunodeficiency type I virus (HIV-1 protease) and its inhibitors. We showed that because of intrinsic com- plexity of the ligand-receptor system, the energy barrier pre- dicted by JI method at high pulling rates is much higher than experimental results. However, with a slower pulling rate and fewer switch times of simulations, the predictions of JI method can approach to the experiments. These results sug- gested that the JI method is more appropriate for reconstruct- ing free energy landscape using the data taken from experi- ments, since the pulling rates used in experiments are often much slower than those in SMD simulations. Furthermore, we showed that a higher loading stiffness can produce higher precision of calculation of energy landscape because it yields a lower mean value and narrower bandwidth of work distri- bution in SMD simulations.展开更多
Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the wo...Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the work and energy consumption of a truck and belt conveyor on a theoretical basis, and con- structed a model to calculate the energy consumption of open-cut mine transportation. Life cycle carbon emission factors and power consumption calculation model were established through a Process Analysis- Life Cycle Analysis (PA-LCA). The following results were obtained: (1) the energy consumption of truck transportation was four to twelve times higher than that of the belt conveyor; (2) the C02 emissions from truck transportation were three to ten times higher than those of the belt conveyor; (3) with the increase in the slope angle for transportation, the ratio of truck to belt conveyor for both energy consumption and carbon emissions gradually decreased; (4) based on 2013 prices in China, the energy cost of transportation using a belt conveyor in open-cut coal mines could save 0.6-2.4 Yuan/(t kin) compared to truck transportation.展开更多
Carboxyltransferase domain(CT) of acetyl-coenzyme A carboxylase(ACCase, EC 6.4.1.2) from a family of Poaceae is an important target of commercial herbicide APPs for controlling grass weed growth. As the abuse of A...Carboxyltransferase domain(CT) of acetyl-coenzyme A carboxylase(ACCase, EC 6.4.1.2) from a family of Poaceae is an important target of commercial herbicide APPs for controlling grass weed growth. As the abuse of APPs herbicides, the resistant ACCase due to the mutation of a single residue(Ile→Leu), which is located in CT active site, is emergent in many populations and species of Poaceae. So it is urgent to understand the resistant mechanism so as to design new effect herbicides. Herein lies the complex of CT dimmer from Lolium rigidum and herbicide haloxyfop successfully constructed for wild type enzyme and Ile/Leu mutant, respectively, providing a basis for explaining the resistance from microscopic structure. Moreover, the binding free energy difference between wild type and mutant enzymes was predicted in good agreement with the known observation, and the various contributions to it were analyzed, by Molecular mechanics-Poisson-Boltzmann surface area(MM-PBSA) method. The results indicate the van der Waals interaction difference between the protein and inhibitor, -22.94 kJ/mol of CT wild type lower than that of mutant, is the major reason for resistance. Structure analysis further suggests that van der Waals interaction difference is originated from the steric hindrance between the side chain of mutated residue Leu and the chiral methyl group of haloxyfop. All these findings enhance the understanding of resistant mechanism of ACCase to herbicide by Ile/Leu mutation and provide an important clue for the rational design of high effective herbicides.展开更多
Anodic oxidation on pure titanium(α-Ti) surface causes the formation ofinterferential films with different colours,mainly golden,pink and blue.The col-our changes with the thickness of the ox-ide film.One of the fact...Anodic oxidation on pure titanium(α-Ti) surface causes the formation ofinterferential films with different colours,mainly golden,pink and blue.The col-our changes with the thickness of the ox-ide film.One of the factors,which influ-ences the growth rate of the film,may bethe grain surface energy.at least at the展开更多
On the basis of the-improved self-exchange model of reorganization phenomenon and accurate potential functions from ab initio calculation at HFSCF 6-31G* and DZP levels a new calculation method was,presented for the i...On the basis of the-improved self-exchange model of reorganization phenomenon and accurate potential functions from ab initio calculation at HFSCF 6-31G* and DZP levels a new calculation method was,presented for the inner-sphere reorganization energy, values for diatomic molecular redox couples in gas phase electron transfer process have been calculated. Results agree well with the experimental data, and the effectiveness and importance of this method have been demonstrated for calculation of inner-sphere reorganization energy in gas phase electron transfer process.展开更多
Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and low...Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and lower electron density plasma are discussed. Results show that the ion temperature given by neutral particle energy spectra is lower than the real ion temperature, but the deviation is within 10% if the ion temperature is less than 800 eV and thecentral chord-averaged electron density does not exceed 3 ×1013 cm-3. But for ion temperature higher than 1000 eV at the central chord-averaged density limit up to 5 ×1013 cm-3, the neutral particle energy spectra can still give the ion temperature within 10% deviation.展开更多
A simple calculator for early stage energy performance assessment in residential buildings was developed and partially validated in this study. The calculator is based on the correlation of heat loss and energy need f...A simple calculator for early stage energy performance assessment in residential buildings was developed and partially validated in this study. The calculator is based on the correlation of heat loss and energy need for heating and has fixed internal heat gains as intended for compliance assessment. With the calculator, the effect of any parameter implemented can be immediately seen on delivered and primary energy. Because of simple equations, it is suitable for implementation into CAD (computer aided design) design tools including basic BIM (building information modeling) data. Results showed that the accuracy of the correlation for the cases with practical relevance was not worse than 14% of the energy need of space heating. This applies for passive house insulation level; for less insulated building envelopes, the deviations were smaller. This 14% equals to only 3 kWh/(m2.a), i.e., the percentage difference in the total delivered and primary energy was much lower because of other components in the energy balance. The deviations determined were implemented in the calculator as safety margin. Results prove that simple energy performance assessment based on specific heat loss coefficient is well justified for early stage energy analyses as well as for compliance assessment implemented in Estonian regulation.展开更多
The possible inclusion modes of berberine(Berb) with β-cyclodextrin(BCD) in aqueous solution were predicted by molecular docking,molecular dynamics(MD) simulation and binding free energy calculations.Firstly,th...The possible inclusion modes of berberine(Berb) with β-cyclodextrin(BCD) in aqueous solution were predicted by molecular docking,molecular dynamics(MD) simulation and binding free energy calculations.Firstly,the molecular docking result reveals that the docking conformations of Berb appeared in two clusters ranked in two opposite orientations.Then,10 ns MD simulation was performed separately on the lowest energy conformation of each orientation(Mode I and Mode II) obtained by molecular docking.Moreover,based on the trajectories from MD simulation,the binding free energies of the two different modes were calculated by the Molecular Mechanics/Poisson Boltzmann surface area(MM/PBSA) method.Through analyzing the binding free energies of Berb with BCD,we found that Mode II was the preferential inclusion mode,which was in good agreement with the experimental result.In addition,the computed results show that the main impetus for the complex was the van der Waals interaction,but the solvation energy and the entropy change produced an adverse effect on the complex.展开更多
Ab initio total energy calculations are used to determine the interface structure of GaN films grown on 6H-SiC(0001)with different substrate reconstructions.The results indicate that GaN films grown on bare SiC(0001)a...Ab initio total energy calculations are used to determine the interface structure of GaN films grown on 6H-SiC(0001)with different substrate reconstructions.The results indicate that GaN films grown on bare SiC(0001)are of the Ga-polarity,while GaN films grown on SiC(0001)with Si adlayer are of the N-polarity if there is no N-Si interchange at the interface.With the interchange,the GaN films are of the Ga-polarity.展开更多
An open-framework gallophosphate, Ga_9(PO_4)_ 12[(H_3TREN)(H_2TREN)_3]·xH_2O was hydrothermally synthesized at 453 K with tris(2-aminoethyl) amine(TREN) as the organic template and characterized by single-crysta...An open-framework gallophosphate, Ga_9(PO_4)_ 12[(H_3TREN)(H_2TREN)_3]·xH_2O was hydrothermally synthesized at 453 K with tris(2-aminoethyl) amine(TREN) as the organic template and characterized by single-crystal X-ray diffraction. Ga_9(PO_4)_ 12[(H_3TREN)(H_2TREN)_3]·xH_2O crystallized in a cubic space group I43m, with a=1.68552(3) nm and Z=2. The structure contains 12-membered ring channels and supercages of 1.434 nm in diameter, and is an analogue of Al_9(PO_4)_ 12(C_ 24H_ 91N_ 16)·17H_2O. Template-TREN in the supercage was different from triethylenetetraamine(TETA) used in the initial reaction mixture due to the construction transformation. The TETAs transformed into the TRENs due to the low interaction energy between the template and framework. We verified it via energy calculation and liquid state NMR.展开更多
It has remained an open problem to accurately compute the partition function of macroscopic systems since the establishment of statistical physics. A rapid method approaching this problem was presented and was strictl...It has remained an open problem to accurately compute the partition function of macroscopic systems since the establishment of statistical physics. A rapid method approaching this problem was presented and was strictly tested by molecular dynamic (MD) simulations on Ar atoms in both dense gaseous and liquid states. The outcomes from the method on the internal energy and the work of isothermal expansion (and therefore the free energy) are in good agreement with the MD simulations, suggesting the method would be immediately applied in vast areas.展开更多
A compressive design and analysis of a turbofan engine is presented in this paper. The components of jet engine have been analyzed based on mechanical design concept. An attempt has been to select materials based on s...A compressive design and analysis of a turbofan engine is presented in this paper. The components of jet engine have been analyzed based on mechanical design concept. An attempt has been to select materials based on sustainability and green design considerations. The energy content (e) of the materials has been one of the parameters for material selection. The choice of material has a substantial impact on cost, manuthcturing process, and the life cycle efficiency. All components nose cone, fan blade, inlet shaft, including compressor has been solid modeled using Siemens NX 11.0 CAD software. The finite element analysis of every component was performed and found safe. A tolerance analysis was performed before assembly of the turbofan engine. A numerical analysis was completed on blade and inlet geometries to determine a more efficient turbofan engine. Thermal analysis was executed oi1 the cone and suitable corrections were made. Finally, the cost and the total energy were estimated to show how much energy is needed to manufacture a turbofan jet engine.展开更多
This work brings all new and advanced technology which is proposed for refinement and improvement in the existing electrification system at domestic as well as commercial levels including hotels, commercial complexes,...This work brings all new and advanced technology which is proposed for refinement and improvement in the existing electrification system at domestic as well as commercial levels including hotels, commercial complexes, apartments, rented floors and rooms. This advanced module will not only convey means of luxury but will also accomplish real-time energy monitoring and cost es-timation. This developed module will rule out entire re-wiring and will be fruitful at places where installation of a new meter was a problem. The new system after installation will offer means of comfort to the consumer, elderly as well as handicapped and disabled people in operating electric load with ease and comfort. Apart from this, it would also benefit the apartment/hotel owner’s and business personnel who have rented their property or portion of property and face problems in calculating energy bill.展开更多
In the first step the extremal values of the vibrational specific heat and entropy represented by the Planck oscillators at the low temperatures could be calculated. The positions of the extrema are defined by the dim...In the first step the extremal values of the vibrational specific heat and entropy represented by the Planck oscillators at the low temperatures could be calculated. The positions of the extrema are defined by the dimensionless ratios between the quanta of the vibrational energy and products of the actual temperature multiplied by the Boltzmann constant. It became evident that position of a local maximum obtained for the Planck’s average energy of a vibration mode and position of a local maximum of entropy are the same. In the next step the Haken’s time-dependent perturbation approach to the pair of quantum non-degenerate Schr<span style="white-space:nowrap;">?</span>dinger eigenstates of energy is re-examined. An averaging process done on the time variable leads to a very simple formula for the coefficients entering the perturbation terms.展开更多
Constraining the melting temperature of iron under Earth’s inner core conditions is crucial for understanding core dynamics and planetary evolution.Here,we develop a deep potential(DP)model for iron that explicitly i...Constraining the melting temperature of iron under Earth’s inner core conditions is crucial for understanding core dynamics and planetary evolution.Here,we develop a deep potential(DP)model for iron that explicitly incorporates electronic entropy contributions governing thermodynamics under Earth’s core conditions.Extensive benchmarking demonstrates the DP’s high fidelity across relevant iron phases and extreme pressure and temperature conditions.Through thermodynamic integration and direct solid–liquid coexistence simulations,the DP predicts melting temperatures for iron at the inner core boundary,consistent with previous ab initio results.This resolves the previous discrepancy of iron’s melting temperature at ICB between the DP model and ab initio calculation and suggests the crucial contribution of electronic entropy.Our work provides insights into machine learning melting behavior of iron under core conditions and provides the basis for future development of binary or ternary DP models for iron and other elements in the core.展开更多
By using potential energy surface(PES)calculations in the three-dimensional space(β_(2),γ,β_(4))within the framework of the macroscopic-microscopic model,the fission trajectory and fission barrier for Z=118(Og),119...By using potential energy surface(PES)calculations in the three-dimensional space(β_(2),γ,β_(4))within the framework of the macroscopic-microscopic model,the fission trajectory and fission barrier for Z=118(Og),119,120 nuclei has been systematically investigated.The calculated PES includes macroscopic liquid-drop energy,microscopic shell correction and pairing correction.Taking the ^(294)Og176 nucleus as an example,we discuss the next closed shell after Z=82 and N=126 with the calculated Woods-Saxon single-particle levels.Then,the results of PES in ^(294)Og is illustrated from the(X,Y)scale to the(β_(2),γ)scale.Theγdegree of freedom reveals the shape evolution clearly during the fission process.The structure near the minimum and saddle point of the PES in the Z=118,119,120 nuclei is demonstrated simultaneously.Based on the potential energy curves,general trends of the evolution of the fission barrier heights and widths are also studied.The triaxial deformation in these superheavy mass regions plays a vital role in the first fission barrier,showing a significant reduction in both triaxial paths.In addition,the model-dependent fission barriers of proton-rich nuclei ^(295)Og,296119,and 297120 are analyzed briefly.Our studies could be valuable for synthesizing the superheavy new elements in the forthcoming HIAF and other facilities.展开更多
Integrated energy systems(IES)are under development to accommodate the widespread penetration of renewable energy into power systems.The universal utilization of coupling components makes the connection between power ...Integrated energy systems(IES)are under development to accommodate the widespread penetration of renewable energy into power systems.The universal utilization of coupling components makes the connection between power grids and heat grids even closer.This paper applies energy flow calculations to planning problems and explores a method for selecting coupling components in the integrated electrical and heating systems.This process is based on the analysis of energy flow distribution and the comprehensive indexes,which include operation cost and the penalty cost of wind curtailment and solar energy curtailment.Besides,a selection method of coupling components installation locations based on energy flow calculations is provided.At last,an IES with 5 electrical buses and 5 heating nodes,and a 9-bus electrical power system with a 31-node heating transmission system are chosen to study the specific application problems in detail as well as to elucidate the effectiveness of the proposed method.It turned out that the relevant coupling components and their positions can be selected according to the indexes obtained by integrated electrical-hydraulic-thermal calculation.This proposed method is conducive to the planning of integrated energy systems.展开更多
For leader-following networked systems with the topology switching and the aperiodic silence,limited-energy output formation tracking problems are investigated.Firstly,a new output formation tracking control protocol ...For leader-following networked systems with the topology switching and the aperiodic silence,limited-energy output formation tracking problems are investigated.Firstly,a new output formation tracking control protocol is proposed,which contains two components associated with the communication interactions between the leader and tracking intelligent agents and the communication interactions among tracking intelligent agents,respectively,and the aperiodic silence,the topology switching and the energy constraint index is introduced properly.Then,a two-step transformation method is presented to separate the whole dynamics of a networked system into the relative dynamics between the leader and tracking intelligent agents and the dynamics of the leader,and sufficient conditions for limited-energy output formation tracking for networked systems with limited energy and aperiodic silence are presented,which are extended into networked systems without the aperiodic silence.Especially,a partition checking algorithm is presented to check limitedenergy output formation tracking design criteria.Finally,a numerical example is illustrated to demonstrate the validness of theoretical results.展开更多
文摘To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the equations of elastic potential of coal and gas dilatation energy theory were set up to process a contrast calculation of the sizes of two kinds of energy. The results show that gas dilatation energy is the uppermost energy source causing outburst occurrence. Furthermore, the mathematical model of spherical flow field gas dilatation energy release was established and MATLAB software was applied to make a numerical calculation analysis on the law of gas dilatation energy release. The results indicate that the gas dilatation energy is closely related to gas parameters and its energy index does reflect the possibility of coal seam outburst.
基金supported by the National Science Foundation of China (10732050,10872115 and 11025208)Excellent Young Scholars Research Fund of Beijing Institute of Technology
文摘Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and ex- periments. However, JI method has not yet been well tested in complex systems such as ligand-receptor molecular pairs. In this paper, we applied a huge number of steered molec- ular dynamics (SMD) simulations to dissociate the protease of human immunodeficiency type I virus (HIV-1 protease) and its inhibitors. We showed that because of intrinsic com- plexity of the ligand-receptor system, the energy barrier pre- dicted by JI method at high pulling rates is much higher than experimental results. However, with a slower pulling rate and fewer switch times of simulations, the predictions of JI method can approach to the experiments. These results sug- gested that the JI method is more appropriate for reconstruct- ing free energy landscape using the data taken from experi- ments, since the pulling rates used in experiments are often much slower than those in SMD simulations. Furthermore, we showed that a higher loading stiffness can produce higher precision of calculation of energy landscape because it yields a lower mean value and narrower bandwidth of work distri- bution in SMD simulations.
基金supported by the key project of the National Natural Science Foundation of China(No.51034005)the Research Fund for the Doctoral Program of Higher Education(the Specialized Research Fund for the Doctoral Program of Higher Education of China)(No.20100095110019)+1 种基金the National‘‘Twelfth Five-Year’’Plan for Science&Technology Support(No.2014BAC14B00)the National High Technology Research and Development Program of China(No.2012AA062004)
文摘Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the work and energy consumption of a truck and belt conveyor on a theoretical basis, and con- structed a model to calculate the energy consumption of open-cut mine transportation. Life cycle carbon emission factors and power consumption calculation model were established through a Process Analysis- Life Cycle Analysis (PA-LCA). The following results were obtained: (1) the energy consumption of truck transportation was four to twelve times higher than that of the belt conveyor; (2) the C02 emissions from truck transportation were three to ten times higher than those of the belt conveyor; (3) with the increase in the slope angle for transportation, the ratio of truck to belt conveyor for both energy consumption and carbon emissions gradually decreased; (4) based on 2013 prices in China, the energy cost of transportation using a belt conveyor in open-cut coal mines could save 0.6-2.4 Yuan/(t kin) compared to truck transportation.
基金Supported by the National Natural Science Foundation of China(Nos.20802025, 30870539, 20432010 and 20672045)
文摘Carboxyltransferase domain(CT) of acetyl-coenzyme A carboxylase(ACCase, EC 6.4.1.2) from a family of Poaceae is an important target of commercial herbicide APPs for controlling grass weed growth. As the abuse of APPs herbicides, the resistant ACCase due to the mutation of a single residue(Ile→Leu), which is located in CT active site, is emergent in many populations and species of Poaceae. So it is urgent to understand the resistant mechanism so as to design new effect herbicides. Herein lies the complex of CT dimmer from Lolium rigidum and herbicide haloxyfop successfully constructed for wild type enzyme and Ile/Leu mutant, respectively, providing a basis for explaining the resistance from microscopic structure. Moreover, the binding free energy difference between wild type and mutant enzymes was predicted in good agreement with the known observation, and the various contributions to it were analyzed, by Molecular mechanics-Poisson-Boltzmann surface area(MM-PBSA) method. The results indicate the van der Waals interaction difference between the protein and inhibitor, -22.94 kJ/mol of CT wild type lower than that of mutant, is the major reason for resistance. Structure analysis further suggests that van der Waals interaction difference is originated from the steric hindrance between the side chain of mutated residue Leu and the chiral methyl group of haloxyfop. All these findings enhance the understanding of resistant mechanism of ACCase to herbicide by Ile/Leu mutation and provide an important clue for the rational design of high effective herbicides.
文摘Anodic oxidation on pure titanium(α-Ti) surface causes the formation ofinterferential films with different colours,mainly golden,pink and blue.The col-our changes with the thickness of the ox-ide film.One of the factors,which influ-ences the growth rate of the film,may bethe grain surface energy.at least at the
文摘On the basis of the-improved self-exchange model of reorganization phenomenon and accurate potential functions from ab initio calculation at HFSCF 6-31G* and DZP levels a new calculation method was,presented for the inner-sphere reorganization energy, values for diatomic molecular redox couples in gas phase electron transfer process have been calculated. Results agree well with the experimental data, and the effectiveness and importance of this method have been demonstrated for calculation of inner-sphere reorganization energy in gas phase electron transfer process.
文摘Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and lower electron density plasma are discussed. Results show that the ion temperature given by neutral particle energy spectra is lower than the real ion temperature, but the deviation is within 10% if the ion temperature is less than 800 eV and thecentral chord-averaged electron density does not exceed 3 ×1013 cm-3. But for ion temperature higher than 1000 eV at the central chord-averaged density limit up to 5 ×1013 cm-3, the neutral particle energy spectra can still give the ion temperature within 10% deviation.
文摘A simple calculator for early stage energy performance assessment in residential buildings was developed and partially validated in this study. The calculator is based on the correlation of heat loss and energy need for heating and has fixed internal heat gains as intended for compliance assessment. With the calculator, the effect of any parameter implemented can be immediately seen on delivered and primary energy. Because of simple equations, it is suitable for implementation into CAD (computer aided design) design tools including basic BIM (building information modeling) data. Results showed that the accuracy of the correlation for the cases with practical relevance was not worse than 14% of the energy need of space heating. This applies for passive house insulation level; for less insulated building envelopes, the deviations were smaller. This 14% equals to only 3 kWh/(m2.a), i.e., the percentage difference in the total delivered and primary energy was much lower because of other components in the energy balance. The deviations determined were implemented in the calculator as safety margin. Results prove that simple energy performance assessment based on specific heat loss coefficient is well justified for early stage energy analyses as well as for compliance assessment implemented in Estonian regulation.
基金Supported by the National Natural Science Foundation of China(No. 20975081)the Open Foundation of the Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education,China(No.KF09014)the Northwest University Graduate Cross-discipline Funds,China(No.09YJC18)
文摘The possible inclusion modes of berberine(Berb) with β-cyclodextrin(BCD) in aqueous solution were predicted by molecular docking,molecular dynamics(MD) simulation and binding free energy calculations.Firstly,the molecular docking result reveals that the docking conformations of Berb appeared in two clusters ranked in two opposite orientations.Then,10 ns MD simulation was performed separately on the lowest energy conformation of each orientation(Mode I and Mode II) obtained by molecular docking.Moreover,based on the trajectories from MD simulation,the binding free energies of the two different modes were calculated by the Molecular Mechanics/Poisson Boltzmann surface area(MM/PBSA) method.Through analyzing the binding free energies of Berb with BCD,we found that Mode II was the preferential inclusion mode,which was in good agreement with the experimental result.In addition,the computed results show that the main impetus for the complex was the van der Waals interaction,but the solvation energy and the entropy change produced an adverse effect on the complex.
文摘Ab initio total energy calculations are used to determine the interface structure of GaN films grown on 6H-SiC(0001)with different substrate reconstructions.The results indicate that GaN films grown on bare SiC(0001)are of the Ga-polarity,while GaN films grown on SiC(0001)with Si adlayer are of the N-polarity if there is no N-Si interchange at the interface.With the interchange,the GaN films are of the Ga-polarity.
文摘An open-framework gallophosphate, Ga_9(PO_4)_ 12[(H_3TREN)(H_2TREN)_3]·xH_2O was hydrothermally synthesized at 453 K with tris(2-aminoethyl) amine(TREN) as the organic template and characterized by single-crystal X-ray diffraction. Ga_9(PO_4)_ 12[(H_3TREN)(H_2TREN)_3]·xH_2O crystallized in a cubic space group I43m, with a=1.68552(3) nm and Z=2. The structure contains 12-membered ring channels and supercages of 1.434 nm in diameter, and is an analogue of Al_9(PO_4)_ 12(C_ 24H_ 91N_ 16)·17H_2O. Template-TREN in the supercage was different from triethylenetetraamine(TETA) used in the initial reaction mixture due to the construction transformation. The TETAs transformed into the TRENs due to the low interaction energy between the template and framework. We verified it via energy calculation and liquid state NMR.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20130071110018)the National Natural Science Foundation of China(Grant No.11274073)
文摘It has remained an open problem to accurately compute the partition function of macroscopic systems since the establishment of statistical physics. A rapid method approaching this problem was presented and was strictly tested by molecular dynamic (MD) simulations on Ar atoms in both dense gaseous and liquid states. The outcomes from the method on the internal energy and the work of isothermal expansion (and therefore the free energy) are in good agreement with the MD simulations, suggesting the method would be immediately applied in vast areas.
文摘A compressive design and analysis of a turbofan engine is presented in this paper. The components of jet engine have been analyzed based on mechanical design concept. An attempt has been to select materials based on sustainability and green design considerations. The energy content (e) of the materials has been one of the parameters for material selection. The choice of material has a substantial impact on cost, manuthcturing process, and the life cycle efficiency. All components nose cone, fan blade, inlet shaft, including compressor has been solid modeled using Siemens NX 11.0 CAD software. The finite element analysis of every component was performed and found safe. A tolerance analysis was performed before assembly of the turbofan engine. A numerical analysis was completed on blade and inlet geometries to determine a more efficient turbofan engine. Thermal analysis was executed oi1 the cone and suitable corrections were made. Finally, the cost and the total energy were estimated to show how much energy is needed to manufacture a turbofan jet engine.
文摘This work brings all new and advanced technology which is proposed for refinement and improvement in the existing electrification system at domestic as well as commercial levels including hotels, commercial complexes, apartments, rented floors and rooms. This advanced module will not only convey means of luxury but will also accomplish real-time energy monitoring and cost es-timation. This developed module will rule out entire re-wiring and will be fruitful at places where installation of a new meter was a problem. The new system after installation will offer means of comfort to the consumer, elderly as well as handicapped and disabled people in operating electric load with ease and comfort. Apart from this, it would also benefit the apartment/hotel owner’s and business personnel who have rented their property or portion of property and face problems in calculating energy bill.
文摘In the first step the extremal values of the vibrational specific heat and entropy represented by the Planck oscillators at the low temperatures could be calculated. The positions of the extrema are defined by the dimensionless ratios between the quanta of the vibrational energy and products of the actual temperature multiplied by the Boltzmann constant. It became evident that position of a local maximum obtained for the Planck’s average energy of a vibration mode and position of a local maximum of entropy are the same. In the next step the Haken’s time-dependent perturbation approach to the pair of quantum non-degenerate Schr<span style="white-space:nowrap;">?</span>dinger eigenstates of energy is re-examined. An averaging process done on the time variable leads to a very simple formula for the coefficients entering the perturbation terms.
基金supported by National Natural Science Foundation of China(Grant Nos.42374108 and 12374015)Y.S.acknowledges support from Fundamental Research Funds for the Central Universities(Grant No.20720230014)+2 种基金R.M.W.acknowledges support from NSF(Grant Nos.EAR-2000850 and EAR-1918126)K.M.H.acknowledges support from NSF(Grant No.EAR-1918134)Shaorong Fang and Tianfu Wu from the Information and Network Center of Xiamen University are acknowledged for their help with Graphics Processing Unit(GPU)computing.We acknowledge the supercomputing time supported by the Opening Project of the Joint Laboratory for Planetary Science and Supercomputing(Grant No.CSYYGS-QT-2024-15),Research Center for Planetary Science,and the National Supercomputing Center in Chengdu.
文摘Constraining the melting temperature of iron under Earth’s inner core conditions is crucial for understanding core dynamics and planetary evolution.Here,we develop a deep potential(DP)model for iron that explicitly incorporates electronic entropy contributions governing thermodynamics under Earth’s core conditions.Extensive benchmarking demonstrates the DP’s high fidelity across relevant iron phases and extreme pressure and temperature conditions.Through thermodynamic integration and direct solid–liquid coexistence simulations,the DP predicts melting temperatures for iron at the inner core boundary,consistent with previous ab initio results.This resolves the previous discrepancy of iron’s melting temperature at ICB between the DP model and ab initio calculation and suggests the crucial contribution of electronic entropy.Our work provides insights into machine learning melting behavior of iron under core conditions and provides the basis for future development of binary or ternary DP models for iron and other elements in the core.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12205076 and 12047504)the China Postdoctoral Science Foundation(Grant No.2020M670012)the Launching Fund of Henan University of Technology(Grant No.2021BS047).
文摘By using potential energy surface(PES)calculations in the three-dimensional space(β_(2),γ,β_(4))within the framework of the macroscopic-microscopic model,the fission trajectory and fission barrier for Z=118(Og),119,120 nuclei has been systematically investigated.The calculated PES includes macroscopic liquid-drop energy,microscopic shell correction and pairing correction.Taking the ^(294)Og176 nucleus as an example,we discuss the next closed shell after Z=82 and N=126 with the calculated Woods-Saxon single-particle levels.Then,the results of PES in ^(294)Og is illustrated from the(X,Y)scale to the(β_(2),γ)scale.Theγdegree of freedom reveals the shape evolution clearly during the fission process.The structure near the minimum and saddle point of the PES in the Z=118,119,120 nuclei is demonstrated simultaneously.Based on the potential energy curves,general trends of the evolution of the fission barrier heights and widths are also studied.The triaxial deformation in these superheavy mass regions plays a vital role in the first fission barrier,showing a significant reduction in both triaxial paths.In addition,the model-dependent fission barriers of proton-rich nuclei ^(295)Og,296119,and 297120 are analyzed briefly.Our studies could be valuable for synthesizing the superheavy new elements in the forthcoming HIAF and other facilities.
基金This work was supported in part by National Natural Science Foundation of China(No.51977042)Innovation Project of Guangxi Graduate Education(No.YCSW2020001).
文摘Integrated energy systems(IES)are under development to accommodate the widespread penetration of renewable energy into power systems.The universal utilization of coupling components makes the connection between power grids and heat grids even closer.This paper applies energy flow calculations to planning problems and explores a method for selecting coupling components in the integrated electrical and heating systems.This process is based on the analysis of energy flow distribution and the comprehensive indexes,which include operation cost and the penalty cost of wind curtailment and solar energy curtailment.Besides,a selection method of coupling components installation locations based on energy flow calculations is provided.At last,an IES with 5 electrical buses and 5 heating nodes,and a 9-bus electrical power system with a 31-node heating transmission system are chosen to study the specific application problems in detail as well as to elucidate the effectiveness of the proposed method.It turned out that the relevant coupling components and their positions can be selected according to the indexes obtained by integrated electrical-hydraulic-thermal calculation.This proposed method is conducive to the planning of integrated energy systems.
基金supported by the National Natural Science Foundation of China(Nos.62176263,62103434,62003363,61867005,61703411)the Science and Technology Nova Plan of Beijing,China(No.Z201100006820122)+4 种基金the Shaanxi Natural Science Foundation for Distinguished Young Scholars,China(No.2021JC-35)the Shaanxi Natural Science Foundation for Youths,China(No.2021JQ-375)China Postdoctoral Science Special Foundation(No.2021T140790)China Postdoctoral Research Foundation of China(No.271004)the Gansu Provincial First-Class Discipline Program of Northwest Minzu University,China(No.11080305)。
文摘For leader-following networked systems with the topology switching and the aperiodic silence,limited-energy output formation tracking problems are investigated.Firstly,a new output formation tracking control protocol is proposed,which contains two components associated with the communication interactions between the leader and tracking intelligent agents and the communication interactions among tracking intelligent agents,respectively,and the aperiodic silence,the topology switching and the energy constraint index is introduced properly.Then,a two-step transformation method is presented to separate the whole dynamics of a networked system into the relative dynamics between the leader and tracking intelligent agents and the dynamics of the leader,and sufficient conditions for limited-energy output formation tracking for networked systems with limited energy and aperiodic silence are presented,which are extended into networked systems without the aperiodic silence.Especially,a partition checking algorithm is presented to check limitedenergy output formation tracking design criteria.Finally,a numerical example is illustrated to demonstrate the validness of theoretical results.