期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Spatial and temporal variation of energy carbon emissions in Yantai from 2001 to 2011 被引量:1
1
作者 Qiuhong Su Qiuxian Wang +1 位作者 Dengjie Wang Xiaomei Yan 《Chinese Journal of Population,Resources and Environment》 2016年第3期182-188,共7页
In order to understand the characteristics of spatial and temporal variation,as well as provide effective ideas on carbon emissions and regulatory policy in Yantai,this article analyzed spatial and temporal variation ... In order to understand the characteristics of spatial and temporal variation,as well as provide effective ideas on carbon emissions and regulatory policy in Yantai,this article analyzed spatial and temporal variation of carbon emissions in Yantai based on energy consumption statistics for a variety of energy sorts together with industrial sectors from 2001 to 2011.The results were as following:First of all,Yantai's carbon emissions grew by an average of 5.5%per year during the last 10 years,and there was a peak of 10.48 million carbon in the year of 2011.Second,compared with the gross domestic product(GDP) growth rate,the figures for energy carbon emissions growth rate were smaller;however the problem of carbon emissions were still more obvious.Furthermore,carbon emissions in Yantai increased rapidly before 2008;while after 2008,it increased more slowly and gradually become stable.Third,the energy consumption was different among regions in Yantai.For instance,the energy consumption in Longkou city was the largest,which occupied 50%of the total carbon emissions in Yantai;and the energy consumption in Chang Island was generally less than 1%of the Longkou consumption.Finally,there were relative close relationships among the spatial difference of carbon emissions,regional resources endowment,economic development,industrial structure,and energy efficiency. 展开更多
关键词 energy carbon emission spatial and temporal variation energy consumption carbon emission intensity
下载PDF
A comparison of the energy consumption and carbon emissions for different modes of transportation in open-cut coal mines 被引量:13
2
作者 Liu Fuming Cai Qingxiang +1 位作者 Chen Shuzhao Zhou Wei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期261-266,共6页
Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the wo... Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the work and energy consumption of a truck and belt conveyor on a theoretical basis, and con- structed a model to calculate the energy consumption of open-cut mine transportation. Life cycle carbon emission factors and power consumption calculation model were established through a Process Analysis- Life Cycle Analysis (PA-LCA). The following results were obtained: (1) the energy consumption of truck transportation was four to twelve times higher than that of the belt conveyor; (2) the C02 emissions from truck transportation were three to ten times higher than those of the belt conveyor; (3) with the increase in the slope angle for transportation, the ratio of truck to belt conveyor for both energy consumption and carbon emissions gradually decreased; (4) based on 2013 prices in China, the energy cost of transportation using a belt conveyor in open-cut coal mines could save 0.6-2.4 Yuan/(t kin) compared to truck transportation. 展开更多
关键词 Open-cut coal mine Mode of transportation energy efficiency carbon emission calculation
下载PDF
An Empirical Study on China's Energy Supply-and-Demand Model Considering Carbon Emission Peak Constraints in 2030 被引量:14
3
作者 Jinhang Chen 《Engineering》 SCIE EI 2017年第4期512-517,共6页
China's energy supply-and-demand model and two related carbon emission scenarios, including a planned peak scenario and an advanced peak scenario, are designed taking into consideration China's economic development,... China's energy supply-and-demand model and two related carbon emission scenarios, including a planned peak scenario and an advanced peak scenario, are designed taking into consideration China's economic development, technological progress, policies, resources, environmental capacity, and other factors. The analysis of the defined scenarios provides the following conclusions: Primary energy and power demand will continue to grow leading up to 2030, and the growth rate of power demand will be much higher than that of primary energy demand. Moreover, low carbonization will be a basic feature of energy supply-and-demand structural changes, and non-fossil energy will replace oil as the second largest energy source. Finally, energy- related carbon emissions could peak in 2025 through the application of more efficient energy consumption patterns and more low-carbon energy supply modes. The push toward decarbonization of the power industry is essential for reducing the peak value of carbon emissions. 展开更多
关键词 carbon emission Peak energy supply and dem and Model Scenario
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部