期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Cosmological Inconstant, Supernovae 1a and Decelerating Expansion
1
作者 Russell Bagdoo 《Journal of Modern Physics》 CAS 2023年第5期692-721,共30页
In 1998, two groups of astronomers, one led by Saul Perlmutter and the other by Brian Schmidt, set out to determine the deceleration—and hence the total mass/energy—of the universe by measuring the recession speeds ... In 1998, two groups of astronomers, one led by Saul Perlmutter and the other by Brian Schmidt, set out to determine the deceleration—and hence the total mass/energy—of the universe by measuring the recession speeds of type la supernovae (SN1a), came to an unexpected conclusion: ever since the universe was about 7 billion years old, its expansion rate has not been decelerating. Instead, the expansion rate has been speeding up. To justify this acceleration, they suggested that the universe does have a mysterious dark energy and they have emerged from oblivion the cosmological constant, positive this time, which is consistent with the image of an inflationary universe. To explain the observed dimming of high-redshift SN1a they have bet essentially on their distance revised upwards. We consider that an accelerated expansion leads right to a “dark energy catastrophe” (i.e., the chasm between the current cosmological vacuum density value of 10 GeV/m<sup>3</sup> and the vacuum energy density proposed by quantum field theory of ~10<sup>122</sup> GeV/m<sup>3</sup>). We suppose rather that the universe knows a slowdown expansion under the positive pressure of a dark energy, otherwise called a variable cosmological constant. The dark luminosity of the latter would be that of a “tired light” which has lost energy with distance. As for the low brilliance of SN1a, it is explained by two physical processes: The first relates to their intrinsic brightness—supposedly do not vary over time—which would depend on the chemical conditions which change with the temporal evolution;the second would concern their apparent luminosity. Besides the serious arguments already known, we strongly propose that their luminosity continually fades by interactions with cosmic magnetic fields, like the earthly PVLAS experiment which loses much more laser photons than expected by crossing a magnetic field. It goes in the sense of a “tired light” which has lost energy with distance, and therefore, a decelerated expansion of the universe. Moreover, we propose the “centrist” principle to complete the hypothesis of the cosmological principle of homogeneity and isotropy considered verified. Without denying the Copernican principle, he is opposed to a “spatial” theoretical construction which accelerates the world towards infinity. The centrist principle gives a “temporal” and privileged vision which tends to demonstrate the deceleration of expansion. 展开更多
关键词 Variable Cosmological Constant SN1a Dark energy catastrophe Theory of Relation Deceleration of the Expansion PVLAS Experiment Tired Light Centrist Principle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部