The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially i...The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms.展开更多
In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic ...In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations.展开更多
To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a ...To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.展开更多
The algebraic energy method (AEM) is applied to the study of molecular dissociation energy De for 11 heteronuclear diatomic electronic states: a^3∑+ state of NaK, X^2∑+ state of XeBr, X^2∑+ state of HgI, X^1...The algebraic energy method (AEM) is applied to the study of molecular dissociation energy De for 11 heteronuclear diatomic electronic states: a^3∑+ state of NaK, X^2∑+ state of XeBr, X^2∑+ state of HgI, X^1∑+ state of LiH, A3∏(1) state of IC1, X^1∑+ state of CsH, A(3∏1) and B0+(3∏) states of CIF, 21∏ state of KRb, X^1∑+ state of CO, and c^3∑+ state of NaK molecule. The results show that the values of De computed by using the AEM are satisfactorily accurate compared with experimental ones. The AEM can serve as an economic and useful tool to generate a reliable De within an allowed experimental error for the electronic states whose molecular dissociation energies are unavailable from the existing literature展开更多
To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltai...To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources,has been carried out.This has been done using a new meta-heuristic algorithm,improved artificial rabbits optimization(IARO).In this study,the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method(TPEM).The IARO algorithm is applied to calculate the best capacity of hub energy equipment,such as solar and wind renewable energy sources,combined heat and power(CHP)systems,steamboilers,energy storage,and electric cars in the day-aheadmarket.The standard ARO algorithmis developed to mimic the foraging behavior of rabbits,and in this work,the algorithm’s effectiveness in avoiding premature convergence is improved by using the dystudynamic inertia weight technique.The proposed IARO-based scheduling framework’s performance is evaluated against that of traditional ARO,particle swarm optimization(PSO),and salp swarm algorithm(SSA).The findings show that,in comparison to previous approaches,the suggested meta-heuristic scheduling framework based on the IARO has increased energy profit in day-ahead electricity,gas,and heating markets by satisfying the operational and energy hub limitations.Additionally,the results show that TPEM approach dependability consideration decreased hub energy’s profit by 8.995%as compared to deterministic planning.展开更多
Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and sha...Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and shape(k),is crucial in describing the actual wind speed data and evaluating the wind energy potential.Therefore,this study compares the most common conventional numerical(CN)estimation methods and the recent intelligent optimization algorithms(IOA)to show how precise estimation of c and k affects the wind energy resource assessments.In addition,this study conducts technical and economic feasibility studies for five sites in the northern part of Saudi Arabia,namely Aljouf,Rafha,Tabuk,Turaif,and Yanbo.Results exhibit that IOAs have better performance in attaining optimal Weibull parameters and provided an adequate description of the observed wind speed data.Also,with six wind turbine technologies rating between 1 and 3MW,the technical and economic assessment results reveal that the CN methods tend to overestimate the energy output and underestimate the cost of energy($/kWh)compared to the assessments by IOAs.The energy cost analyses show that Turaif is the windiest site,with an electricity cost of$0.016906/kWh.The highest wind energy output is obtained with the wind turbine having a rated power of 2.5 MW at all considered sites with electricity costs not exceeding$0.02739/kWh.Finally,the outcomes of this study exhibit the potential of wind energy in Saudi Arabia,and its environmental goals can be acquired by harvesting wind energy.展开更多
The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct n...The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions.展开更多
Nonlinear energy sink is a passive energy absorption device that surpasses linear dampers, and has gained significant attention in various fields of vibration suppression. This is owing to its capacity to offer high v...Nonlinear energy sink is a passive energy absorption device that surpasses linear dampers, and has gained significant attention in various fields of vibration suppression. This is owing to its capacity to offer high vibration attenuation and robustness across a wide frequency spectrum. Energy harvester is a device employed to convert kinetic energy into usable electric energy. In this paper, we propose an electromagnetic energy harvester enhanced viscoelastic nonlinear energy sink(VNES) to achieve passive vibration suppression and energy harvesting simultaneously. A critical departure from prior studies is the investigation of the stochastic P-bifurcation of the electromechanically coupled VNES system under narrowband random excitation. Initially, approximate analytical solutions are derived using a combination of a multiple-scale method and a perturbation approach. The substantial agreement between theoretical analysis solutions and numerical solutions obtained from Monte Carlo simulation underscores the method's high degree of validity. Furthermore, the effects of system parameters on system responses are carefully examined. Additionally, we demonstrate that stochastic P-bifurcation can be induced by system parameters, which is further verified by the steady-state density functions of displacement. Lastly,we analyze the impacts of various parameters on the mean square current and the mean output power, which are crucial for selecting suitable parameters to enhance the energy harvesting performance.展开更多
This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff...This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.展开更多
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe...In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.展开更多
Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction...Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction(VCI). Based on an iterative algorithm, the surfaces(SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q_(6) symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF_(3)^(+) are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching ν_(5) and symmetric stretching ν_(6) exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory.展开更多
Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a ...Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a sealant,coupled with an air seepage evaluation model that incorporates Knudsen diffusion.Moreover,the initial coating application methods were outlined,and the advantages of using NOSP compared to other sealing materials,particularly regarding cost and construction techniques,were also examined and discussed.Experimental results indicated a significant reduction in permeability of rock specimens coated with a 7–10μm thick NOSP layer.Specifically,under a 0.5 MPa pulse pressure,the permeability decreased to less than 1 n D,and under a 4 MPa pulse pressure,it ranged between4.5×10^(-6)–5.5×10^(-6)m D,marking a 75%–80%decrease in granite permeability.The sealing efficacy of NOSP surpasses concrete and is comparable to rubber materials.The optimal viscosity for application lies between 95 and 105 KU,and the coating thickness should ideally range from 7 to 10μm,applied to substrates with less than 3%porosity.This study provides new insights into air transport and sealing mechanisms at the pore level,proposing NOSP as a cost-effective and simplified solution for CAES applications.展开更多
Eliminating the effects of gravity and designing nonlinear energy sinks(NESs)that suppress vibration in the vertical direction is a challenging task with numerous damping requirements.In this paper,the dynamic design ...Eliminating the effects of gravity and designing nonlinear energy sinks(NESs)that suppress vibration in the vertical direction is a challenging task with numerous damping requirements.In this paper,the dynamic design of a vertical track nonlinear energy sink(VTNES)with zero linear stiffness in the vertical direction is proposed and realized for the first time.The motion differential equations of the VTNES coupled with a linear oscillator(LO)are established.With the strong nonlinearity considered of the VTNES,the steady-state response of the system is analyzed with the harmonic balance method(HBM),and the accuracy of the HBM is verified numerically.On this basis,the VTNES prototype is manufactured,and its nonlinear stiffness is identified.The damping effect and dynamic characteristics of the VTNES are studied theoretically and experimentally.The results show that the VTNES has better damping effects when strong modulation responses(SMRs)occur.Moreover,even for small-amplitude vibration,the VTNES also has a good vibration suppression effect.To sum up,in order to suppress the vertical vibration,an NES is designed and developed,which can suppress the vertical vibration within certain ranges of the resonance frequency and the vibration intensity.展开更多
With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of th...With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of these idle UPS resources is an urgent problem that must be addressed.Based on the energy storage type of the UPS(EUPS)and using renewable sources,a solution for IDCs is proposed in this study.Subsequently,an EUPS cluster classification method based on the concept of shared mechanism niche(CSMN)was proposed to effectively solve the EUPS control problem.Accordingly,the classified EUPS aggregation unit was used to determine the optimal operation of the IDC.An IDC cost minimization optimization model was established,and the Quantum Particle Swarm Optimization(QPSO)algorithm was adopted.Finally,the economy and effectiveness of the three-tier optimization framework and model were verified through three case studies.展开更多
In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system....In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system.The LoMaC property refers to the exact local conservation of macroscopic mass,momentum,and energy at the discrete level.The recently developed LoMaC low rank tensor algorithm(arXiv:2207.00518)simultaneously evolves the macroscopic conservation laws of mass,momentum,and energy using the kinetic flux vector splitting;then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables.This paper is a generalization of our previous work,but with DG discretization to take advantage of its compactness and flexibility in handling boundary conditions and its superior accuracy in the long term.The algorithm is developed in a similar fashion as that for a finite difference scheme,by observing that the DG method can be viewed equivalently in a nodal fashion.With the nodal DG method,assuming a tensorized computational grid,one will be able to(i)derive differentiation matrices for different nodal points based on a DG upwind discretization of transport terms,and(ii)define a weighted inner product space based on the nodal DG grid points.The algorithm can be extended to the high dimensional problems by hierarchical Tucker(HT)decomposition of solution tensors and a corresponding conservative projection algorithm.In a similar spirit,the algorithm can be extended to DG methods on nodal points of an unstructured mesh,or to other types of discretization,e.g.,the spectral method in velocity direction.Extensive numerical results are performed to showcase the efficacy of the method.展开更多
Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the ...Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the detection of grouting anomalies within connections,enhancing its precision through the integration of wavelet packet energy principles for damage identification purposes.A series of grouting completeness assessments were meticulously conducted,taking into account variables such as the divergent material properties of the sleeves and the configuration of adjacent reinforcement.The findings revealed that:(i)the energy distribution for the highstrength concrete cohort predominantly occupied the frequency bands 42,44,45,and 47,whereas for other groups,it was concentrated within the 37 to 40 frequency band;(ii)the delineation of empty sleeves was effectively discernible by examining the wavelet packet energy ratios across the spectrum of frequencies,albeit distinguishing between sleeves with 50%and full grouting density proved challenging;and(iii)the wavelet packet energy analysis yielded variable detection outcomes contingent on the material attributes of the sleeves,demonstrating heightened sensitivity when applied to ultrahigh-performance concrete matrices and GFRP-reinforced steel bars.展开更多
Dust deposition on the surface of photovoltaic (PV) cells poses a significant challenge to their efficiency, especially in arid regions characterized by desert and semi-desert conditions. Despite the pronounced impact...Dust deposition on the surface of photovoltaic (PV) cells poses a significant challenge to their efficiency, especially in arid regions characterized by desert and semi-desert conditions. Despite the pronounced impact of dust accumulation, these regions offer optimal solar radiation and minimal cloud cover, making them ideal candidates for widespread PV cell deployment. Various surface cleaning methods exist, each employing distinct approaches. Choosing an appropriate cleaning method requires a comprehensive understanding of the mechanisms involved in both dust deposition on module surfaces and dust adhesion to PV cell surfaces. The mechanisms governing dust deposition and adhesion are complex and multifaceted, influenced by factors such as the nature and properties of the dust particles, environmental climatic conditions, characteristics of protective coatings, and the specific location of the PV installation. These factors exhibit regional variations, necessitating the implementation of diverse cleaning approaches tailored to the unique conditions of each location. The first part of this article explores the factors influencing dust deposition on PV cell surfaces, delving into the intricate interplay of environmental variables and particle characteristics. Subsequently, the second part addresses various cleaning methods, offering an analysis of their respective advantages and disadvantages. By comprehensively examining the factors influencing dust accumulation and evaluating the effectiveness of different cleaning strategies, this article aims to contribute valuable insights to the ongoing efforts to optimize the performance and longevity of photovoltaic systems in diverse geographical contexts.展开更多
A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the key...A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the keyhole and the inverse Bremsstrahlung absorption coefficient in the keyhole plasma are obtained from the experiments;2) instead of using a parallel incident beam,a focused laser beam with real Gaussian intensity distribution is implemented;3) both Fresnel absorption and inverse Bremsstrahlung absorption during multiple reflections are considered.The calculation results show that the distribution of absorbed laser intensity by the keyhole wall is not uniform.The maximum laser energy is absorbed by the bottom of the keyhole,although no rays irradiate directly onto the bottom.According to analysis of beam focusing characteristics,the location of the focal plane plays a more important role in the laser energy absorption by the front wall than by the rear wall.展开更多
基金the National Supercomputer Center in Tianjin for their patient assistance in providing the compilation environment.We thank the editor,Huajian Yao,for handling the manuscript and Mingming Li and another anonymous reviewer for their constructive comments.The research leading to these results has received funding from National Natural Science Foundation of China projects(Grant Nos.92355302 and 42121005)Taishan Scholar projects(Grant No.tspd20210305)others(Grant Nos.XDB0710000,L2324203,XK2023DXC001,LSKJ202204400,and ZR2021ZD09).
文摘The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms.
基金supported by China Postdoctoral Science Foundation grant 2020TQ0344the NSFC grants 11871139 and 12101597the NSF grants DMS-1720116,DMS-2012882,DMS-2011838,DMS-1719942,DMS-1913072.
文摘In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations.
文摘To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.
基金Project supported by the Science Foundation of China West Normal University (Grant No 05B016) and the Science Foundation of Sichuan province Educational Bureau of China (Grant No 2006A080).
文摘The algebraic energy method (AEM) is applied to the study of molecular dissociation energy De for 11 heteronuclear diatomic electronic states: a^3∑+ state of NaK, X^2∑+ state of XeBr, X^2∑+ state of HgI, X^1∑+ state of LiH, A3∏(1) state of IC1, X^1∑+ state of CsH, A(3∏1) and B0+(3∏) states of CIF, 21∏ state of KRb, X^1∑+ state of CO, and c^3∑+ state of NaK molecule. The results show that the values of De computed by using the AEM are satisfactorily accurate compared with experimental ones. The AEM can serve as an economic and useful tool to generate a reliable De within an allowed experimental error for the electronic states whose molecular dissociation energies are unavailable from the existing literature
基金This research is supported by the Deputyship forResearch&Innovation,Ministry of Education in Saudi Arabia under Project Number(IFP-2022-35).
文摘To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources,has been carried out.This has been done using a new meta-heuristic algorithm,improved artificial rabbits optimization(IARO).In this study,the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method(TPEM).The IARO algorithm is applied to calculate the best capacity of hub energy equipment,such as solar and wind renewable energy sources,combined heat and power(CHP)systems,steamboilers,energy storage,and electric cars in the day-aheadmarket.The standard ARO algorithmis developed to mimic the foraging behavior of rabbits,and in this work,the algorithm’s effectiveness in avoiding premature convergence is improved by using the dystudynamic inertia weight technique.The proposed IARO-based scheduling framework’s performance is evaluated against that of traditional ARO,particle swarm optimization(PSO),and salp swarm algorithm(SSA).The findings show that,in comparison to previous approaches,the suggested meta-heuristic scheduling framework based on the IARO has increased energy profit in day-ahead electricity,gas,and heating markets by satisfying the operational and energy hub limitations.Additionally,the results show that TPEM approach dependability consideration decreased hub energy’s profit by 8.995%as compared to deterministic planning.
基金The author extends his appreciation to theDeputyship forResearch&Innovation,Ministry of Education,Saudi Arabia for funding this research work through the Project Number(QUIF-4-3-3-33891)。
文摘Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and shape(k),is crucial in describing the actual wind speed data and evaluating the wind energy potential.Therefore,this study compares the most common conventional numerical(CN)estimation methods and the recent intelligent optimization algorithms(IOA)to show how precise estimation of c and k affects the wind energy resource assessments.In addition,this study conducts technical and economic feasibility studies for five sites in the northern part of Saudi Arabia,namely Aljouf,Rafha,Tabuk,Turaif,and Yanbo.Results exhibit that IOAs have better performance in attaining optimal Weibull parameters and provided an adequate description of the observed wind speed data.Also,with six wind turbine technologies rating between 1 and 3MW,the technical and economic assessment results reveal that the CN methods tend to overestimate the energy output and underestimate the cost of energy($/kWh)compared to the assessments by IOAs.The energy cost analyses show that Turaif is the windiest site,with an electricity cost of$0.016906/kWh.The highest wind energy output is obtained with the wind turbine having a rated power of 2.5 MW at all considered sites with electricity costs not exceeding$0.02739/kWh.Finally,the outcomes of this study exhibit the potential of wind energy in Saudi Arabia,and its environmental goals can be acquired by harvesting wind energy.
基金supported by the Japan Society for the Promotion of Science,KAKENHI Grant No.23H00475.
文摘The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions.
基金Project supported by the National Natural Science Foundation of China(Grant No.12002089)the Science and Technology Projects in Guangzhou(Grant No.2023A04J1323)UKRI Horizon Europe Guarantee(Grant No.EP/Y016130/1)。
文摘Nonlinear energy sink is a passive energy absorption device that surpasses linear dampers, and has gained significant attention in various fields of vibration suppression. This is owing to its capacity to offer high vibration attenuation and robustness across a wide frequency spectrum. Energy harvester is a device employed to convert kinetic energy into usable electric energy. In this paper, we propose an electromagnetic energy harvester enhanced viscoelastic nonlinear energy sink(VNES) to achieve passive vibration suppression and energy harvesting simultaneously. A critical departure from prior studies is the investigation of the stochastic P-bifurcation of the electromechanically coupled VNES system under narrowband random excitation. Initially, approximate analytical solutions are derived using a combination of a multiple-scale method and a perturbation approach. The substantial agreement between theoretical analysis solutions and numerical solutions obtained from Monte Carlo simulation underscores the method's high degree of validity. Furthermore, the effects of system parameters on system responses are carefully examined. Additionally, we demonstrate that stochastic P-bifurcation can be induced by system parameters, which is further verified by the steady-state density functions of displacement. Lastly,we analyze the impacts of various parameters on the mean square current and the mean output power, which are crucial for selecting suitable parameters to enhance the energy harvesting performance.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11902081)the Science and Technology Projects of Guangzhou (Grant No. 202201010326)the Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No. 2023A1515010833)。
文摘This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
文摘In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52002318 and 22103061)。
文摘Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction(VCI). Based on an iterative algorithm, the surfaces(SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q_(6) symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF_(3)^(+) are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching ν_(5) and symmetric stretching ν_(6) exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory.
基金supported by the National Natural Science Foundation of China(No.42272321)Hubei Provincial Key Research Projects(Nos.2022BAA093 and 2022BAD163)+1 种基金Major Scientific and Technological Special Project of Jiangxi Province(No.2023ACG01004)WSGRI Engineering&Surveying Incorporation Limited(No.6120230256)。
文摘Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a sealant,coupled with an air seepage evaluation model that incorporates Knudsen diffusion.Moreover,the initial coating application methods were outlined,and the advantages of using NOSP compared to other sealing materials,particularly regarding cost and construction techniques,were also examined and discussed.Experimental results indicated a significant reduction in permeability of rock specimens coated with a 7–10μm thick NOSP layer.Specifically,under a 0.5 MPa pulse pressure,the permeability decreased to less than 1 n D,and under a 4 MPa pulse pressure,it ranged between4.5×10^(-6)–5.5×10^(-6)m D,marking a 75%–80%decrease in granite permeability.The sealing efficacy of NOSP surpasses concrete and is comparable to rubber materials.The optimal viscosity for application lies between 95 and 105 KU,and the coating thickness should ideally range from 7 to 10μm,applied to substrates with less than 3%porosity.This study provides new insights into air transport and sealing mechanisms at the pore level,proposing NOSP as a cost-effective and simplified solution for CAES applications.
基金the China National Funds for Distinguished Young Scholars(No.12025204)。
文摘Eliminating the effects of gravity and designing nonlinear energy sinks(NESs)that suppress vibration in the vertical direction is a challenging task with numerous damping requirements.In this paper,the dynamic design of a vertical track nonlinear energy sink(VTNES)with zero linear stiffness in the vertical direction is proposed and realized for the first time.The motion differential equations of the VTNES coupled with a linear oscillator(LO)are established.With the strong nonlinearity considered of the VTNES,the steady-state response of the system is analyzed with the harmonic balance method(HBM),and the accuracy of the HBM is verified numerically.On this basis,the VTNES prototype is manufactured,and its nonlinear stiffness is identified.The damping effect and dynamic characteristics of the VTNES are studied theoretically and experimentally.The results show that the VTNES has better damping effects when strong modulation responses(SMRs)occur.Moreover,even for small-amplitude vibration,the VTNES also has a good vibration suppression effect.To sum up,in order to suppress the vertical vibration,an NES is designed and developed,which can suppress the vertical vibration within certain ranges of the resonance frequency and the vibration intensity.
基金supported by the Key Technology Projects of the China Southern Power Grid Corporation(STKJXM20200059)the Key Support Project of the Joint Fund of the National Natural Science Foundation of China(U22B20123)。
文摘With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of these idle UPS resources is an urgent problem that must be addressed.Based on the energy storage type of the UPS(EUPS)and using renewable sources,a solution for IDCs is proposed in this study.Subsequently,an EUPS cluster classification method based on the concept of shared mechanism niche(CSMN)was proposed to effectively solve the EUPS control problem.Accordingly,the classified EUPS aggregation unit was used to determine the optimal operation of the IDC.An IDC cost minimization optimization model was established,and the Quantum Particle Swarm Optimization(QPSO)algorithm was adopted.Finally,the economy and effectiveness of the three-tier optimization framework and model were verified through three case studies.
基金supported by the NSF(Grant Nos.the NSF-DMS-1818924 and 2111253)the Air Force Office of Scientific Research FA9550-22-1-0390 and Department of Energy DE-SC0023164+1 种基金supported by the NSF(Grant Nos.NSF-DMS-1830838 and NSF-DMS-2111383)the Air Force Office of Scientific Research FA9550-22-1-0390.
文摘In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system.The LoMaC property refers to the exact local conservation of macroscopic mass,momentum,and energy at the discrete level.The recently developed LoMaC low rank tensor algorithm(arXiv:2207.00518)simultaneously evolves the macroscopic conservation laws of mass,momentum,and energy using the kinetic flux vector splitting;then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables.This paper is a generalization of our previous work,but with DG discretization to take advantage of its compactness and flexibility in handling boundary conditions and its superior accuracy in the long term.The algorithm is developed in a similar fashion as that for a finite difference scheme,by observing that the DG method can be viewed equivalently in a nodal fashion.With the nodal DG method,assuming a tensorized computational grid,one will be able to(i)derive differentiation matrices for different nodal points based on a DG upwind discretization of transport terms,and(ii)define a weighted inner product space based on the nodal DG grid points.The algorithm can be extended to the high dimensional problems by hierarchical Tucker(HT)decomposition of solution tensors and a corresponding conservative projection algorithm.In a similar spirit,the algorithm can be extended to DG methods on nodal points of an unstructured mesh,or to other types of discretization,e.g.,the spectral method in velocity direction.Extensive numerical results are performed to showcase the efficacy of the method.
基金supported by financial support from the National Natural Science Foundation of China(U1904177)the Excellent Youth Natural Science Foundation of Henan Province of China(212300410079)+2 种基金the Subproject of the Key Project of the National Development and Reform Commission of China(202203001)the Project of Young Key Teachers in Henan Province of China(2019GGJS01)Horizontal Research Projects(20230352A).
文摘Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the detection of grouting anomalies within connections,enhancing its precision through the integration of wavelet packet energy principles for damage identification purposes.A series of grouting completeness assessments were meticulously conducted,taking into account variables such as the divergent material properties of the sleeves and the configuration of adjacent reinforcement.The findings revealed that:(i)the energy distribution for the highstrength concrete cohort predominantly occupied the frequency bands 42,44,45,and 47,whereas for other groups,it was concentrated within the 37 to 40 frequency band;(ii)the delineation of empty sleeves was effectively discernible by examining the wavelet packet energy ratios across the spectrum of frequencies,albeit distinguishing between sleeves with 50%and full grouting density proved challenging;and(iii)the wavelet packet energy analysis yielded variable detection outcomes contingent on the material attributes of the sleeves,demonstrating heightened sensitivity when applied to ultrahigh-performance concrete matrices and GFRP-reinforced steel bars.
文摘Dust deposition on the surface of photovoltaic (PV) cells poses a significant challenge to their efficiency, especially in arid regions characterized by desert and semi-desert conditions. Despite the pronounced impact of dust accumulation, these regions offer optimal solar radiation and minimal cloud cover, making them ideal candidates for widespread PV cell deployment. Various surface cleaning methods exist, each employing distinct approaches. Choosing an appropriate cleaning method requires a comprehensive understanding of the mechanisms involved in both dust deposition on module surfaces and dust adhesion to PV cell surfaces. The mechanisms governing dust deposition and adhesion are complex and multifaceted, influenced by factors such as the nature and properties of the dust particles, environmental climatic conditions, characteristics of protective coatings, and the specific location of the PV installation. These factors exhibit regional variations, necessitating the implementation of diverse cleaning approaches tailored to the unique conditions of each location. The first part of this article explores the factors influencing dust deposition on PV cell surfaces, delving into the intricate interplay of environmental variables and particle characteristics. Subsequently, the second part addresses various cleaning methods, offering an analysis of their respective advantages and disadvantages. By comprehensively examining the factors influencing dust accumulation and evaluating the effectiveness of different cleaning strategies, this article aims to contribute valuable insights to the ongoing efforts to optimize the performance and longevity of photovoltaic systems in diverse geographical contexts.
基金Projects (51175162, 50805045) supported by the National Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the keyhole and the inverse Bremsstrahlung absorption coefficient in the keyhole plasma are obtained from the experiments;2) instead of using a parallel incident beam,a focused laser beam with real Gaussian intensity distribution is implemented;3) both Fresnel absorption and inverse Bremsstrahlung absorption during multiple reflections are considered.The calculation results show that the distribution of absorbed laser intensity by the keyhole wall is not uniform.The maximum laser energy is absorbed by the bottom of the keyhole,although no rays irradiate directly onto the bottom.According to analysis of beam focusing characteristics,the location of the focal plane plays a more important role in the laser energy absorption by the front wall than by the rear wall.