The climate crisis necessitates the development of non-fossil energy sources.Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure.However,solar f...The climate crisis necessitates the development of non-fossil energy sources.Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure.However,solar fuel production is in its early stages of development,constrained by low conversion efficiency and challenges in scaling up production.Concentrated solar energy(CSE)technology has matured alongside the rapid growth of solar thermal power plants.This review provides an overview of current CSE methods and solar fuel production,analyzes their integration compatibility,and delves into the theoretical mechanisms by which CSE impacts solar energy conversion efficiency and product selectivity in the context of photo-electrochemistry,thermochemistry,and photo-thermal co-catalysis for solar fuel production.The review also summarizes approaches to studying the photoelectric and photothermal effects of CSE.Lastly,it explores emerging novel CSE technology methods in the field of solar fuel production.展开更多
The thermal pyrolysis of natural gas as a clean hydrogen production route is examined. The concept of a double-walled reactor tube is proposed and implemented. Preliminary experiments using an external plasma heating ...The thermal pyrolysis of natural gas as a clean hydrogen production route is examined. The concept of a double-walled reactor tube is proposed and implemented. Preliminary experiments using an external plasma heating source are carried out to validate this concept. The results point out the efficient CH4 dissociation above 1850 K (CH4 conversion over 90%) and the key influence of the gas residence time. Simulations are performed to predict the conversion rate of CH4 at the reactor outlet, and are consistent with experimental tendencies. A solar reactor prototype featuring four independent double-walled tubes is then developed. The heat in high temperature process required for the endothermic reaction of natural gas pyrolysis is supplied by concentrated solar energy. The tubes are heated uniformly by radiation using the blackbody effect of a cavity-receiver absorbing the concentrated solar irradiation through a quartz window. The gas composition at the reactor outlet, the chemical conversion of CH4, and the yield to H2 are determined with respect to reaction temperature, inlet gas flow-rates, and feed gas composition. The longer the gas residence time, the higher the CH4 conversion and H2 yield, whereas the lower the amount of acetylene. A CH4 conversion of 99% and H2 yield of about 85% are measured at 1880 K with 30% CH4 in the feed gas (6 L/min injected and residence time of 18 ms), A temperature increase from 1870 K to 1970 K does not improve the H2 yield.展开更多
The carbothermal reduction of MgO and Al_(2)O_(3) in argon flow at low pressure allows to lower the onset temperature of metal vapor formation.Thermodynamic calculations indicate that metal formation begins at 1400 an...The carbothermal reduction of MgO and Al_(2)O_(3) in argon flow at low pressure allows to lower the onset temperature of metal vapor formation.Thermodynamic calculations indicate that metal formation begins at 1400 and 1700 K for a primary vacuum(1000 Pa),respectively,for Mg and Al.In the experimental section,concentrated solar energy was used for the process heating in order to favor energy savings.The products of the reaction between MgO or Al_(2)O_(3) and 2 varieties of carbon(graphite,carbon black)in flowing argon atmosphere at a total pressure of around 1000 to 1600 Pa were studied using X-ray diffraction,and microstructure observations revealed the formation of metallic nanopowders with some by-products.Metallic conversions close to 45 wt%and 52 wt%,respectively,for Mg and Al,were obtained.The low conversion yield of the carbothermal reduction of MgO can be attributed to a backward reaction reforming MgO powder and to a sintering process between oxide particles at high temperature.Aluminum production challenge is to avoid formation of undesired by-products:Al_(2)O,Al_(4)C_(3) and Al-oxycarbides.Advantages and weaknesses of the used process are described and some improvements are proposed to increase metallic yields.展开更多
Solar energy storage is an indispensable and sustainable utilization mode of renewable energy;environment friendly,large-capacity,low heat loss,and long-term storage are critical to improving the integration of solar ...Solar energy storage is an indispensable and sustainable utilization mode of renewable energy;environment friendly,large-capacity,low heat loss,and long-term storage are critical to improving the integration of solar energy supply.Traditional thermal energy storage mode cannot achieve long-term storage due to the heat loss even under the excellent thermal insulation measures.In this work,a solar-powered membrane-based concentration gradient energy storage of liquid desiccant solutions is presented.In the membrane distillation process driven by solar energy under the right solar radiation conditions,the liquid desiccant solution is concentrated gradually and long-term stored as the concentration gradient energy.To this end,the measured temperature of solar hot water is in the range of 40°C to 90°C from May to September,2018,in Xi’an,China.And then,the LiBr solution(50 wt%),the LiCl solution(35 wt%),and the CaCl_(2)solution(40 wt%)were membrane-based concentrated in the temperature range of 42°C to 63°C,separately.The results showed that the water vapor pressure difference decides the water vapor transferred across the membrane pores from the liquid desiccant side to the air side.The energy storage density of liquid desiccant solutions increases along with the increases in temperature and the membrane area.Consequently,when the LiBr,LiCl,and CaCl_(2)solutions are concentrated from 50%to 55%,from 35%to 40%,and from 40%to 45%,separately,the concentration energy storage density is 245 kJ/kg,350 kJ/kg,and 306 kJ/kg,which is equivalent to or even higher than ice storage capacity.Due to the two independent closed cycle of the liquid desiccant solution and air,the liquid desiccant solution’s concentration gradient energy storage can be long-term stored environment-friendly without any insulation measures.展开更多
The energy crisis has aroused widespread concern, and the reform of energy structure is imminent. In the future,the energy structure will be dominated by the solar energy and other renewable energy sources. The solar ...The energy crisis has aroused widespread concern, and the reform of energy structure is imminent. In the future,the energy structure will be dominated by the solar energy and other renewable energy sources. The solar concentrating technology as a promising method has been widely studied for collecting solar energy. However, the previous solar concentrating technologies suffer from some drawbacks, such as low focusing efficiency and large concentrating size. The Luneburg lens with highly efficient aberration-free focusing provides a new route for solar/energy concentrator. In this work, we designed a plane focal surface Luneburg lens(PFSLL) by transformation optics(TO). The PFSLL provides a relatively high focusing efficiency and concentration ratio of collection of energy. At the same time, it circumvents the disadvantage of curve surface of the classical Luneburg lens in device integration. Based on the reciprocity of electromagnetic waves, the PFSLL can also be applied to the antenna field to achieve broadband wide-angle scanning and highly directional radiation.展开更多
Active tamper detection using watermarking technique can localize the tampered area and recover the lost information. In this paper, we propose an approach that the watermark is robust to legitimate lossy compression,...Active tamper detection using watermarking technique can localize the tampered area and recover the lost information. In this paper, we propose an approach that the watermark is robust to legitimate lossy compression, fragile to malicious tampering and capable of recovery. We embed the watermark bits in the direct current value of energy concentration transform domain coefficients. Let the original watermark bits be content dependent and apply error correction coding to them before embedded to the image. While indicating the tam- pered area, the extracted bits from a suspicious image can be further decoded and then used to roughly recover the corresponding area. We also theoretically study the image quality and bit error rate. ExperimentM results demonstrate the effectiveness of the proposed scheme.展开更多
The structure of parabolic condensers makes them susceptible to wind load because of their thin and large windward mirrors.In this paper,the wind pressure on a model of a condenser mirror(1:35)on multistorey flat roof...The structure of parabolic condensers makes them susceptible to wind load because of their thin and large windward mirrors.In this paper,the wind pressure on a model of a condenser mirror(1:35)on multistorey flat roofs is analysed via pressure measurement in a wind tunnel.The mean wind-pressure distribution law of flat-roof condenser mirrors(including the change law with working conditions and the maximum distribution characteristics)and the distribution law of fluctuating and extreme wind pressure are obtained.Furthermore,by comparison with the ground-based condenser distribution law,similarities and differences between the two are obtained.Research results show that the wind-pressure distribution law of flat-roof parabolic condenser mirrors is the same as those on the ground,but the mean wind-pressure coefficient(absolute value)is generally~30%smaller.Furthermore,the maximum effect is generally located at the windward mirror edge and the mirror is more susceptible to wind pressure in wind directions of 30°and 135°-150°.The results of this study can provide a theoretical reference for wind-resistant structure design and multistorey flat-roof condenser-related research.展开更多
基金support by the National Key Research and Development Program of China(2022YFB3803600)the National Natural Science Foundation of China(No.52276212)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20231211)the Suzhou Science and Technology Program(SYG202101)the Key Research and Development Program in Shaanxi Province of China(No.2023-YBGY-300)the China Fundamental Research Funds for the Central Universities.
文摘The climate crisis necessitates the development of non-fossil energy sources.Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure.However,solar fuel production is in its early stages of development,constrained by low conversion efficiency and challenges in scaling up production.Concentrated solar energy(CSE)technology has matured alongside the rapid growth of solar thermal power plants.This review provides an overview of current CSE methods and solar fuel production,analyzes their integration compatibility,and delves into the theoretical mechanisms by which CSE impacts solar energy conversion efficiency and product selectivity in the context of photo-electrochemistry,thermochemistry,and photo-thermal co-catalysis for solar fuel production.The review also summarizes approaches to studying the photoelectric and photothermal effects of CSE.Lastly,it explores emerging novel CSE technology methods in the field of solar fuel production.
基金European FP6 research project SOLHYCARB (Contract SES-CT-2006-19770)
文摘The thermal pyrolysis of natural gas as a clean hydrogen production route is examined. The concept of a double-walled reactor tube is proposed and implemented. Preliminary experiments using an external plasma heating source are carried out to validate this concept. The results point out the efficient CH4 dissociation above 1850 K (CH4 conversion over 90%) and the key influence of the gas residence time. Simulations are performed to predict the conversion rate of CH4 at the reactor outlet, and are consistent with experimental tendencies. A solar reactor prototype featuring four independent double-walled tubes is then developed. The heat in high temperature process required for the endothermic reaction of natural gas pyrolysis is supplied by concentrated solar energy. The tubes are heated uniformly by radiation using the blackbody effect of a cavity-receiver absorbing the concentrated solar irradiation through a quartz window. The gas composition at the reactor outlet, the chemical conversion of CH4, and the yield to H2 are determined with respect to reaction temperature, inlet gas flow-rates, and feed gas composition. The longer the gas residence time, the higher the CH4 conversion and H2 yield, whereas the lower the amount of acetylene. A CH4 conversion of 99% and H2 yield of about 85% are measured at 1880 K with 30% CH4 in the feed gas (6 L/min injected and residence time of 18 ms), A temperature increase from 1870 K to 1970 K does not improve the H2 yield.
基金the Programme“Investissements d’Avenir”(Investment for the Future)of the Agence Nationale de la Recherche(National Agency for Research)of the French State under award number ANR-10-LABX-22-01-SOLSTICE through the funding of the post-doctoral position of J.Puig.
文摘The carbothermal reduction of MgO and Al_(2)O_(3) in argon flow at low pressure allows to lower the onset temperature of metal vapor formation.Thermodynamic calculations indicate that metal formation begins at 1400 and 1700 K for a primary vacuum(1000 Pa),respectively,for Mg and Al.In the experimental section,concentrated solar energy was used for the process heating in order to favor energy savings.The products of the reaction between MgO or Al_(2)O_(3) and 2 varieties of carbon(graphite,carbon black)in flowing argon atmosphere at a total pressure of around 1000 to 1600 Pa were studied using X-ray diffraction,and microstructure observations revealed the formation of metallic nanopowders with some by-products.Metallic conversions close to 45 wt%and 52 wt%,respectively,for Mg and Al,were obtained.The low conversion yield of the carbothermal reduction of MgO can be attributed to a backward reaction reforming MgO powder and to a sintering process between oxide particles at high temperature.Aluminum production challenge is to avoid formation of undesired by-products:Al_(2)O,Al_(4)C_(3) and Al-oxycarbides.Advantages and weaknesses of the used process are described and some improvements are proposed to increase metallic yields.
基金This work is financially supported by National Natural Science Foundation of China(No.51478386).
文摘Solar energy storage is an indispensable and sustainable utilization mode of renewable energy;environment friendly,large-capacity,low heat loss,and long-term storage are critical to improving the integration of solar energy supply.Traditional thermal energy storage mode cannot achieve long-term storage due to the heat loss even under the excellent thermal insulation measures.In this work,a solar-powered membrane-based concentration gradient energy storage of liquid desiccant solutions is presented.In the membrane distillation process driven by solar energy under the right solar radiation conditions,the liquid desiccant solution is concentrated gradually and long-term stored as the concentration gradient energy.To this end,the measured temperature of solar hot water is in the range of 40°C to 90°C from May to September,2018,in Xi’an,China.And then,the LiBr solution(50 wt%),the LiCl solution(35 wt%),and the CaCl_(2)solution(40 wt%)were membrane-based concentrated in the temperature range of 42°C to 63°C,separately.The results showed that the water vapor pressure difference decides the water vapor transferred across the membrane pores from the liquid desiccant side to the air side.The energy storage density of liquid desiccant solutions increases along with the increases in temperature and the membrane area.Consequently,when the LiBr,LiCl,and CaCl_(2)solutions are concentrated from 50%to 55%,from 35%to 40%,and from 40%to 45%,separately,the concentration energy storage density is 245 kJ/kg,350 kJ/kg,and 306 kJ/kg,which is equivalent to or even higher than ice storage capacity.Due to the two independent closed cycle of the liquid desiccant solution and air,the liquid desiccant solution’s concentration gradient energy storage can be long-term stored environment-friendly without any insulation measures.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0710100)the National Natural Science Foundation of China (Grant Nos. 92050102 and 11874311)+1 种基金the Shenzhen Science and Technology Program (Grant No. JCYJ20210324121610028)the Fundamental Research Funds for the Central Universities (Grant Nos. 20720220033 and 20720200074)。
文摘The energy crisis has aroused widespread concern, and the reform of energy structure is imminent. In the future,the energy structure will be dominated by the solar energy and other renewable energy sources. The solar concentrating technology as a promising method has been widely studied for collecting solar energy. However, the previous solar concentrating technologies suffer from some drawbacks, such as low focusing efficiency and large concentrating size. The Luneburg lens with highly efficient aberration-free focusing provides a new route for solar/energy concentrator. In this work, we designed a plane focal surface Luneburg lens(PFSLL) by transformation optics(TO). The PFSLL provides a relatively high focusing efficiency and concentration ratio of collection of energy. At the same time, it circumvents the disadvantage of curve surface of the classical Luneburg lens in device integration. Based on the reciprocity of electromagnetic waves, the PFSLL can also be applied to the antenna field to achieve broadband wide-angle scanning and highly directional radiation.
基金the National Natural Science Foundation of China(Nos.61071152 and 61271316)the National Basic Research Program (973) of China(Nos.2010CB731406 and 2013CB329605)the National "Twelfth Five-Year" Plan for Science&Technology Support(No.2012BAH38B04)
文摘Active tamper detection using watermarking technique can localize the tampered area and recover the lost information. In this paper, we propose an approach that the watermark is robust to legitimate lossy compression, fragile to malicious tampering and capable of recovery. We embed the watermark bits in the direct current value of energy concentration transform domain coefficients. Let the original watermark bits be content dependent and apply error correction coding to them before embedded to the image. While indicating the tam- pered area, the extracted bits from a suspicious image can be further decoded and then used to roughly recover the corresponding area. We also theoretically study the image quality and bit error rate. ExperimentM results demonstrate the effectiveness of the proposed scheme.
基金supported by National Natural Science Foundation of China(grant number:51708478)the Natural Science Foundation of Hunan province(grant number:2020JJ5549)the State Key Laboratory of Marine Resource Utilization in South China Sea(MRUKF2021028).
文摘The structure of parabolic condensers makes them susceptible to wind load because of their thin and large windward mirrors.In this paper,the wind pressure on a model of a condenser mirror(1:35)on multistorey flat roofs is analysed via pressure measurement in a wind tunnel.The mean wind-pressure distribution law of flat-roof condenser mirrors(including the change law with working conditions and the maximum distribution characteristics)and the distribution law of fluctuating and extreme wind pressure are obtained.Furthermore,by comparison with the ground-based condenser distribution law,similarities and differences between the two are obtained.Research results show that the wind-pressure distribution law of flat-roof parabolic condenser mirrors is the same as those on the ground,but the mean wind-pressure coefficient(absolute value)is generally~30%smaller.Furthermore,the maximum effect is generally located at the windward mirror edge and the mirror is more susceptible to wind pressure in wind directions of 30°and 135°-150°.The results of this study can provide a theoretical reference for wind-resistant structure design and multistorey flat-roof condenser-related research.