Smart energy monitoring and management system lays a foundation for the application and development of smart energy. However, in recent years, the work efficiency of smart energy development enterprises has generally ...Smart energy monitoring and management system lays a foundation for the application and development of smart energy. However, in recent years, the work efficiency of smart energy development enterprises has generally been low, and there is an urgent need to improve the application efficiency, resilience and sustainability of smart energy monitoring and management system. Digital twin technology provides a data-centric solution to improve smart energy monitoring and management system, bringing an opportunity to transform passive infrastructure assets into data-centric systems. This paper expounds on the concept and key technologies of digital twin, and designs a smart energy monitoring and management system based on digital twin technology, which has dual significance for promoting the development of smart energy field and promoting the application of digital twin.展开更多
This paper analyzes the shortcomings of ECOTECT simulation software, puts forward the real-time energy consumption monitoring software. According to the structural characteristics of large public buildings, the paper ...This paper analyzes the shortcomings of ECOTECT simulation software, puts forward the real-time energy consumption monitoring software. According to the structural characteristics of large public buildings, the paper proposes the key technology development and the functions of the software platform, and provides RS485 communication code. The research results in this paper have some practical value on energy consumption of large-scale construction monitoring.展开更多
The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks c...The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks can achieve excellent fuel economy through efficient energy management strategies(EMS).Therefore,a series hybrid system is constructed based on a 100-ton mining dump truck in this paper.And inspired by the dynamic programming(DP)algorithm,a predictive equivalent consumption minimization strategy(P-ECMS)based on the DP optimization result is proposed.Based on the optimal control manifold and the SOC reference trajectory obtained by the DP algorithm,the P-ECMS strategy performs real-time stage parameter optimization to obtain the optimal equivalent factor(EF).Finally,applying the equivalent consumption minimization strategy(ECMS)realizes real-time control.The simulation results show that the equivalent fuel consumption of the P-ECMS strategy under the experimentally collected mining cycle conditions is 150.8 L/100 km,which is 10.9%less than that of the common CDCS strategy(169.3 L/100 km),and achieves 99.47%of the fuel saving effect of the DP strategy(150 L/100 km).展开更多
Given the strategic importance of energy and air pollution in the today world and due to the fact that the maritime transport system is one of the main sources of energy consumption and emissions in the environment, p...Given the strategic importance of energy and air pollution in the today world and due to the fact that the maritime transport system is one of the main sources of energy consumption and emissions in the environment, particularly contamination of water, so in recent years, fuel consumption and emissions reduction in the maritime transport industry has received considerable attention. Thus, in this paper, a new method is provided for typical boat hybridization, so by adding an electric motor and battery to boat power transmission system, dynamic performance will improve fuel consumption and emissions reduces. For this purpose, power transmission system elements are modelled and boat function is evaluated in real terms of movement by defining energy management strategy between power sources. The simulation results show that boat hybridization considerably reduces fuel consumption and emissions.展开更多
In this letter, a Function node-based Multiple Pairwise Keys Management (MPKMF) protocol for Wireless Sensor Networks (WSNs) is firstly designed, in which ordinary nodes and cluster head nodes are responsible for data...In this letter, a Function node-based Multiple Pairwise Keys Management (MPKMF) protocol for Wireless Sensor Networks (WSNs) is firstly designed, in which ordinary nodes and cluster head nodes are responsible for data collection and transmission, and function nodes are responsible for key management. There are more than one function nodes in the cluster consulting the key generation and other security decision-making. The function nodes are the second-class security center because of the characteristics of the distributed WSNs. Secondly, It is also described that the formation of function nodes and cluster heads under the control of the former, and five kinds of keys, i.e., individual key, pairwise keys, cluster key, management key, and group key. Finally, performance analysis and experiments show that, the protocol is superior in communication and energy consumption. The delay of establishing the cluster key meets the requirements, and a multiple pairwise key which adopts the coordinated security authentication scheme is provided.展开更多
Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the mai...Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions.展开更多
In this paper,the Internet ofMedical Things(IoMT)is identified as a promising solution,which integrates with the cloud computing environment to provide remote health monitoring solutions and improve the quality of ser...In this paper,the Internet ofMedical Things(IoMT)is identified as a promising solution,which integrates with the cloud computing environment to provide remote health monitoring solutions and improve the quality of service(QoS)in the healthcare sector.However,problems with the present architectural models such as those related to energy consumption,service latency,execution cost,and resource usage,remain a major concern for adopting IoMT applications.To address these problems,this work presents a four-tier IoMT-edge-fog-cloud architecture along with an optimization model formulated using Mixed Integer Linear Programming(MILP),with the objective of efficiently processing and placing IoMT applications in the edge-fog-cloud computing environment,while maintaining certain quality standards(e.g.,energy consumption,service latency,network utilization).A modeling environment is used to assess and validate the proposed model by considering different traffic loads and processing requirements.In comparison to the other existing models,the performance analysis of the proposed approach shows a maximum saving of 38%in energy consumption and a 73%reduction in service latency.The results also highlight that offloading the IoMT application to the edge and fog nodes compared to the cloud is highly dependent on the tradeoff between the network journey time saved vs.the extra power consumed by edge or fog resources.展开更多
The energy management system(EMS),which acts as the heart of the energy management center of a steel enterprise,is a large computer system focused on the concentrative monitor and control of the production and utiliza...The energy management system(EMS),which acts as the heart of the energy management center of a steel enterprise,is a large computer system focused on the concentrative monitor and control of the production and utilization of energy.Although Chinese steel industry was well developed in the latest decade, so far the levels of the comprehensive energy consumption per ton steel among Chinese steel enterprises are remarkably distinct,and the average value of the comprehensive energy consumption per ton steel of them has still been much higher than the value of those in developed countries.This bad situation,in the opinion of the author,partially results from the poor ability for most Chinese steel enterprises to manage the production and utilization of energy.National policies associated to energy-saving and ejection-decreasing call for steel enterprises to build the EMS;and more and more steel enterprises themselves also desire to achieve EMS projects so that they can optimize their energy production and utilization.Baosteel,the largest and most advanced steel enterprise in China,has got plenty of experience in the EMS due to its incessant practice for more than 30 years in the design,construction,application,and revampment of its EMS.In the present article,the features of an advanced EMS is described and discussed based on the design practice of the EMS of Baosteel Zhanjiang Project.An advanced EMS should be an optimized and integrated system,which possesses of the characteristic of high managing efficiency,enough openness in expansion,friendly interfaces, and simple structure.Furthermore,it could support many-sided applications,e.g.,energy related data mineing,energy network combination and co-supply,application of geographic information technology,and other technical researched on energy-saving aspects.It is known that some energy-related indexes of Baosteel have stood on a high level better than those of some worldwide famous steel enterprises.Moreover,it goes without saying that the indexes of Baosteel Zhanjiang will be better than those of present Baosteel.Therefore, one can easily expect that the new EMS of Baosteel Zhanjiang will be much more advanced,which will be more helpful to fulfil systematiclly saving of energy,to elevate the efficiency of energy utilization,to lower the comprehensive energy consumption per ton steel.展开更多
Rainwater harvesting?provides an important alternative source of water in household buildings which?increases water security in urban areas. However, high energy cost consumption by the rainwater harvesting systems re...Rainwater harvesting?provides an important alternative source of water in household buildings which?increases water security in urban areas. However, high energy cost consumption by the rainwater harvesting systems results in higher management costs which may derail the investment viability of these systems in households. This prompted this study to establish ways through which the management cost of rainwater harvesting systems can be minimized in household buildings. A survey of 200 households from Greenspan, Komarock, Utawala, Kileleshwa and Runda in Nairobi?County was undertaken as?well?as?data?on?the?type?of?rainwater harvesting?systems, their operation and maintenance cost collected using observation checklists and questionnaires. The findings indicated that rainwater harvesting typologies 1, 2, 4 and 5 had their water pumped from first-level storage to the second-level storage then supplied to usage points by gravity. Whereas, typologies 3 and 6 had their water moved manually and by gravity respectively. On annual operation cost, 100% of households with typology 3 and 6 spent no money whereas, 100%, 75% and 70.6% with typology 4 and 5, 1 and 2 respectively spent Ksh. 1?-?5000. On annual maintenance cost, 100%, 93.7% and 77.8% of households with typology 5 and 6, 3 and 4 respectively spent Ksh. 1?-?5000 while 25% and 22.2% of households with typology 1 and 2 respectively spent Ksh. 5000?-?10,000. Advanced typology 6 with one-level storage point supplies rainwater to all parts of the household by gravity. This eliminates operation costs spent on energy consumption due to pumping of water,?thus minimizing overall management cost spent on rainwater harvesting systems in household buildings.展开更多
Based on the analysis of different requirements of energy management center construction and the data acquisition of various industries in wide area network, as well as the practices of real-lime online system, the pa...Based on the analysis of different requirements of energy management center construction and the data acquisition of various industries in wide area network, as well as the practices of real-lime online system, the paper puts forward the construction scheme of regional energy management center (REMC) which can achieve real time online monitoring of organizations' energy consumption via data collection, and also proposes the design idea of energy data acquisition based on national standards.展开更多
Retail stores are responsible for large energy consumption, which requires more intensified action to improve energy efficiency. Effective energy management can improve energy efficiency in retail stores. However, it...Retail stores are responsible for large energy consumption, which requires more intensified action to improve energy efficiency. Effective energy management can improve energy efficiency in retail stores. However, it is a challenge to implement energy management in retail stores due to different stakeholders’ roles and diverse store features. Literally, technical and management aspects of energy management have received much attention in research. However, limited studies systemically investigate internal and external factors and stakeholders’ involvement in the energy management of retail buildings. With multi-cases in the Philippines, this paper examines the energy profiles in retail stores and develops an assessment for energy management in retail stores. The assessment includes store features, internal and external stakeholders, climate, electricity price and grid condition, energy consumption, and management. The assessment can assist retail stores to develop their energy management plans with their store profile.展开更多
为有效地提高插电式燃料电池汽车的经济性,实现燃料电池和动力电池的功率最优分配,考虑到行驶工况、电池荷电状态(State of charge,SOC)、等效因子与氢气消耗之间的密切联系,制定融合工况预测的里程自适应等效氢耗最小策略.通过基于误...为有效地提高插电式燃料电池汽车的经济性,实现燃料电池和动力电池的功率最优分配,考虑到行驶工况、电池荷电状态(State of charge,SOC)、等效因子与氢气消耗之间的密切联系,制定融合工况预测的里程自适应等效氢耗最小策略.通过基于误差反向传播的神经网络来实现未来短期车速的预测,分析未来车辆需求功率变化,同时借助全球定位系统规划一条通往目的地的路径,智能交通系统便可获取整个行程的交通流量信息,利用行驶里程和SOC实时动态修正等效消耗最小策略中的等效因子,实现能量管理策略的自适应性.基于MATLAB/Simulink软件,搭建整车仿真模型与传统的能量管理策略进行仿真对比验证.仿真结果表明,采用基于神经网络的工况预测算法能够较好地预测未来短期工况,其预测精度相较于马尔可夫方法提高12.5%,所提出的能量管理策略在城市道路循环工况(UDDS)下的氢气消耗比电量消耗维持(CD/CS)策略下降55.6%.硬件在环试验表明,在市郊循环工况(EUDC)下的氢气消耗比CD/CS策略下降26.8%,仿真验证结果表明了所提出的策略相比于CD/CS策略在氢气消耗方面的优越性能,并通过硬件在环实验验证了所提策略的有效性.展开更多
文摘Smart energy monitoring and management system lays a foundation for the application and development of smart energy. However, in recent years, the work efficiency of smart energy development enterprises has generally been low, and there is an urgent need to improve the application efficiency, resilience and sustainability of smart energy monitoring and management system. Digital twin technology provides a data-centric solution to improve smart energy monitoring and management system, bringing an opportunity to transform passive infrastructure assets into data-centric systems. This paper expounds on the concept and key technologies of digital twin, and designs a smart energy monitoring and management system based on digital twin technology, which has dual significance for promoting the development of smart energy field and promoting the application of digital twin.
文摘This paper analyzes the shortcomings of ECOTECT simulation software, puts forward the real-time energy consumption monitoring software. According to the structural characteristics of large public buildings, the paper proposes the key technology development and the functions of the software platform, and provides RS485 communication code. The research results in this paper have some practical value on energy consumption of large-scale construction monitoring.
文摘The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks can achieve excellent fuel economy through efficient energy management strategies(EMS).Therefore,a series hybrid system is constructed based on a 100-ton mining dump truck in this paper.And inspired by the dynamic programming(DP)algorithm,a predictive equivalent consumption minimization strategy(P-ECMS)based on the DP optimization result is proposed.Based on the optimal control manifold and the SOC reference trajectory obtained by the DP algorithm,the P-ECMS strategy performs real-time stage parameter optimization to obtain the optimal equivalent factor(EF).Finally,applying the equivalent consumption minimization strategy(ECMS)realizes real-time control.The simulation results show that the equivalent fuel consumption of the P-ECMS strategy under the experimentally collected mining cycle conditions is 150.8 L/100 km,which is 10.9%less than that of the common CDCS strategy(169.3 L/100 km),and achieves 99.47%of the fuel saving effect of the DP strategy(150 L/100 km).
文摘Given the strategic importance of energy and air pollution in the today world and due to the fact that the maritime transport system is one of the main sources of energy consumption and emissions in the environment, particularly contamination of water, so in recent years, fuel consumption and emissions reduction in the maritime transport industry has received considerable attention. Thus, in this paper, a new method is provided for typical boat hybridization, so by adding an electric motor and battery to boat power transmission system, dynamic performance will improve fuel consumption and emissions reduces. For this purpose, power transmission system elements are modelled and boat function is evaluated in real terms of movement by defining energy management strategy between power sources. The simulation results show that boat hybridization considerably reduces fuel consumption and emissions.
基金Supported by the National Natural Science Foundation of China (No. 60475012)
文摘In this letter, a Function node-based Multiple Pairwise Keys Management (MPKMF) protocol for Wireless Sensor Networks (WSNs) is firstly designed, in which ordinary nodes and cluster head nodes are responsible for data collection and transmission, and function nodes are responsible for key management. There are more than one function nodes in the cluster consulting the key generation and other security decision-making. The function nodes are the second-class security center because of the characteristics of the distributed WSNs. Secondly, It is also described that the formation of function nodes and cluster heads under the control of the former, and five kinds of keys, i.e., individual key, pairwise keys, cluster key, management key, and group key. Finally, performance analysis and experiments show that, the protocol is superior in communication and energy consumption. The delay of establishing the cluster key meets the requirements, and a multiple pairwise key which adopts the coordinated security authentication scheme is provided.
文摘Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions.
基金The authors extend their appreciation to the Deputyship for Research and Innovation,Ministry of Education in Saudi Arabia for funding this research work the project number(442/204).
文摘In this paper,the Internet ofMedical Things(IoMT)is identified as a promising solution,which integrates with the cloud computing environment to provide remote health monitoring solutions and improve the quality of service(QoS)in the healthcare sector.However,problems with the present architectural models such as those related to energy consumption,service latency,execution cost,and resource usage,remain a major concern for adopting IoMT applications.To address these problems,this work presents a four-tier IoMT-edge-fog-cloud architecture along with an optimization model formulated using Mixed Integer Linear Programming(MILP),with the objective of efficiently processing and placing IoMT applications in the edge-fog-cloud computing environment,while maintaining certain quality standards(e.g.,energy consumption,service latency,network utilization).A modeling environment is used to assess and validate the proposed model by considering different traffic loads and processing requirements.In comparison to the other existing models,the performance analysis of the proposed approach shows a maximum saving of 38%in energy consumption and a 73%reduction in service latency.The results also highlight that offloading the IoMT application to the edge and fog nodes compared to the cloud is highly dependent on the tradeoff between the network journey time saved vs.the extra power consumed by edge or fog resources.
文摘The energy management system(EMS),which acts as the heart of the energy management center of a steel enterprise,is a large computer system focused on the concentrative monitor and control of the production and utilization of energy.Although Chinese steel industry was well developed in the latest decade, so far the levels of the comprehensive energy consumption per ton steel among Chinese steel enterprises are remarkably distinct,and the average value of the comprehensive energy consumption per ton steel of them has still been much higher than the value of those in developed countries.This bad situation,in the opinion of the author,partially results from the poor ability for most Chinese steel enterprises to manage the production and utilization of energy.National policies associated to energy-saving and ejection-decreasing call for steel enterprises to build the EMS;and more and more steel enterprises themselves also desire to achieve EMS projects so that they can optimize their energy production and utilization.Baosteel,the largest and most advanced steel enterprise in China,has got plenty of experience in the EMS due to its incessant practice for more than 30 years in the design,construction,application,and revampment of its EMS.In the present article,the features of an advanced EMS is described and discussed based on the design practice of the EMS of Baosteel Zhanjiang Project.An advanced EMS should be an optimized and integrated system,which possesses of the characteristic of high managing efficiency,enough openness in expansion,friendly interfaces, and simple structure.Furthermore,it could support many-sided applications,e.g.,energy related data mineing,energy network combination and co-supply,application of geographic information technology,and other technical researched on energy-saving aspects.It is known that some energy-related indexes of Baosteel have stood on a high level better than those of some worldwide famous steel enterprises.Moreover,it goes without saying that the indexes of Baosteel Zhanjiang will be better than those of present Baosteel.Therefore, one can easily expect that the new EMS of Baosteel Zhanjiang will be much more advanced,which will be more helpful to fulfil systematiclly saving of energy,to elevate the efficiency of energy utilization,to lower the comprehensive energy consumption per ton steel.
文摘Rainwater harvesting?provides an important alternative source of water in household buildings which?increases water security in urban areas. However, high energy cost consumption by the rainwater harvesting systems results in higher management costs which may derail the investment viability of these systems in households. This prompted this study to establish ways through which the management cost of rainwater harvesting systems can be minimized in household buildings. A survey of 200 households from Greenspan, Komarock, Utawala, Kileleshwa and Runda in Nairobi?County was undertaken as?well?as?data?on?the?type?of?rainwater harvesting?systems, their operation and maintenance cost collected using observation checklists and questionnaires. The findings indicated that rainwater harvesting typologies 1, 2, 4 and 5 had their water pumped from first-level storage to the second-level storage then supplied to usage points by gravity. Whereas, typologies 3 and 6 had their water moved manually and by gravity respectively. On annual operation cost, 100% of households with typology 3 and 6 spent no money whereas, 100%, 75% and 70.6% with typology 4 and 5, 1 and 2 respectively spent Ksh. 1?-?5000. On annual maintenance cost, 100%, 93.7% and 77.8% of households with typology 5 and 6, 3 and 4 respectively spent Ksh. 1?-?5000 while 25% and 22.2% of households with typology 1 and 2 respectively spent Ksh. 5000?-?10,000. Advanced typology 6 with one-level storage point supplies rainwater to all parts of the household by gravity. This eliminates operation costs spent on energy consumption due to pumping of water,?thus minimizing overall management cost spent on rainwater harvesting systems in household buildings.
文摘Based on the analysis of different requirements of energy management center construction and the data acquisition of various industries in wide area network, as well as the practices of real-lime online system, the paper puts forward the construction scheme of regional energy management center (REMC) which can achieve real time online monitoring of organizations' energy consumption via data collection, and also proposes the design idea of energy data acquisition based on national standards.
文摘Retail stores are responsible for large energy consumption, which requires more intensified action to improve energy efficiency. Effective energy management can improve energy efficiency in retail stores. However, it is a challenge to implement energy management in retail stores due to different stakeholders’ roles and diverse store features. Literally, technical and management aspects of energy management have received much attention in research. However, limited studies systemically investigate internal and external factors and stakeholders’ involvement in the energy management of retail buildings. With multi-cases in the Philippines, this paper examines the energy profiles in retail stores and develops an assessment for energy management in retail stores. The assessment includes store features, internal and external stakeholders, climate, electricity price and grid condition, energy consumption, and management. The assessment can assist retail stores to develop their energy management plans with their store profile.
文摘为有效地提高插电式燃料电池汽车的经济性,实现燃料电池和动力电池的功率最优分配,考虑到行驶工况、电池荷电状态(State of charge,SOC)、等效因子与氢气消耗之间的密切联系,制定融合工况预测的里程自适应等效氢耗最小策略.通过基于误差反向传播的神经网络来实现未来短期车速的预测,分析未来车辆需求功率变化,同时借助全球定位系统规划一条通往目的地的路径,智能交通系统便可获取整个行程的交通流量信息,利用行驶里程和SOC实时动态修正等效消耗最小策略中的等效因子,实现能量管理策略的自适应性.基于MATLAB/Simulink软件,搭建整车仿真模型与传统的能量管理策略进行仿真对比验证.仿真结果表明,采用基于神经网络的工况预测算法能够较好地预测未来短期工况,其预测精度相较于马尔可夫方法提高12.5%,所提出的能量管理策略在城市道路循环工况(UDDS)下的氢气消耗比电量消耗维持(CD/CS)策略下降55.6%.硬件在环试验表明,在市郊循环工况(EUDC)下的氢气消耗比CD/CS策略下降26.8%,仿真验证结果表明了所提出的策略相比于CD/CS策略在氢气消耗方面的优越性能,并通过硬件在环实验验证了所提策略的有效性.